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PAPER

ARGai 2.0: A Feature Engineering Enabled Deep 
Network Model for Antibiotic Resistance Gene  
and Strain Identification in E. coli

ABSTRACT
Escherichia coli (E. coli) is a group of bacteria that cause infections in the gastrointestinal (GI) 
tract and urinary tract (UTIs). The rise in antimicrobial resistance (AMR) due to antibiotic- 
resistant genes (ARGs) linked to E. coli strains that cause UTIs poses a significant threat. 
Identifying ARGs and resistant strains is crucial for effective treatment. To identify ARGs 
and classify resistant strains in E. coli utilizing gene expression (GE) data with advanced 
computational techniques such as feature engineering and transfer learning (TL). In TL, 
knowledge acquired by the baseline model is transferred to the target domain (BI-LSTM-
GRU). ARGai 2.0 utilizes the Synthetic Minority Over-sampling Technique (SMOTE) for over-
sampling the GE dataset to evaluate the effectiveness of the proposed TL framework. Our 
proposed ARGai 2.0 model achieved a higher classification accuracy of 14% compared to 
1D CNN and 11% compared to BI-LSTM-GRU individually. The analysis revealed that genes 
associated with the nitrate reductase operon (narU, narV, narW, narY, and narZ) exhibit high 
connectivity and interaction scores, indicating their central role in nitrate metabolism. This 
aligns with the high enrichment FDR of 3.07E-10 and fold enrichment of 229.28 for path-
ways related to nitrate reductase complex and nitrite transmembrane transporter activity. 
ARGai 2.0 successfully detected the significant genes responsible for antibiotic resistance 
and classified the resistant strains. The gene network analysis highlights the central role of 
nitrate metabolism genes, while peripheral genes like ansP and yncG are involved in more 
specialized functions.
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1	 INTRODUCTION

Infectious diseases have consistently posed significant risks to global health, 
financial stability, and social structures. In terms of mortality and morbidity, 
infectious diseases have the most apparent and immediate impacts. The threat 
is exacerbated by antimicrobial resistance (AMR) in pathogenic bacteria, leading 
to prolonged hospitalizations, elevated medical expenses, and increasing mortal-
ity rates, while complicating the treatment of prevalent ailments [1, 2]. More than 
1.2 million fatalities were directly related to AMR in 2019 [3, 4]. An estimated 
10 million individuals could lose their lives to AMR), sometimes called the “Silent 
Pandemic,” by 2050 if current trends continue. If this occurs, it could surpass all 
other global killers in terms of sheer volume [5]. World health is at threat because 
of antibiotic resistance in several bacteria, including Escherichia coli (E. coli), which 
causes urinary tract infections (UTIs). The early identification of resistant strains 
and antibiotic-resistant genes (ARGs) needs to be addressed more effectively. In a 
study it was found that E. coli was the predominant causal agent, accounting for 
64.29% of urinary tract infections in the entire study cohort [6]. In non-E. coli uri-
nary tract infections, the predominant causal bacteria were Klebsiella pneumoniae 
(16.43%), succeeded by Pseudomonas aeruginosa, Enterobacter, Proteus mirabilis, and 
Enterococcus [7–9].

The traditional approaches for AMR analysis, particularly the ARG identification, 
are complex, time-consuming, and prone to errors [10]. To increase antimicrobial 
resistance detection through better genomic data processing, different machine 
learning (ML) and deep learning (DL) models are employed [11, 12]. To uncover 
resistance genes in E. coli and gain knowledge about the behavior and variabil-
ity of ARGs, aiGeneR 1.0, an AI model, is being employed [11]. This advancement 
contributes to the development of efficient diagnostic tools and individualized 
therapies, which considerably improve the early diagnosis and management of 
resistant strains.

In a recent study, it was found that using ML with whole-genome sequencing 
and gene-sharing network analysis may efficiently find broad networks of ARGs 
shared by E. coli populations across animals, people, and the environment in live-
stock farming [13]. In recent years, ML and DL models have been effectively applied 
to gene expression data (GE) to predict outcomes, particularly in cancer; however, 
research into discovering ARGs using advanced methods is restricted. These devel-
opments, together with AI models, can help in the identification of gene and strain 
classification of infectious diseases.

In this work, we aim to use effective feature selection strategies (ensemble 
approach) to identify ARGs and adopt the potential of transfer learning techniques 
to classify the resistant strains utilizing the NGS gene expression data. We hypoth-
esized that data augmentation, ensemble feature selection, and TL improve classi-
fication accuracy. We also hypothesized that fine-tuning TL architecture along with 
ensemble features reduces the computational cost. In addition to this, we aim that 
the genes identified by our proposed model (ARGai 2.0) have more biological sig-
nificance towards AMR. Following is a summary of the paper’s structure and its 
main points:

The relevant AMR analysis work is presented in Section 2. Section 3 delves into 
the materials and processes, while Section 4 lays out the blueprints for our pro-
jected ARGai 2.0. Section 5 showcases the assessments of performance. Section 6 
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delves into the results of our proposed model, while section 7 showcases the ROC 
of the models we examined. Our ARGai 2.0 model’s biological validation and the 
training size effect are covered in Sections 8 and 9, respectively. The limits, bench-
marking, and special notes are contained in Section 10. In Section 11, we go over our 
concluding remarks.

2	 RELATED	WORK

In recent years, significant progress has been achieved through AMR research 
using ML and DL approaches, including the identification of ARGs using pre-trained 
protein language models such as PLM-ARG [9]. This technique refines ARG iden-
tification by utilizing large protein datasets, increasing precision for both known 
and unknown resistance genes, and aligning with uniting-centered pan-genome 
strategies. Applying ML to a pan-genome graph improves the prediction of antibiotic 
resistance and the identification of new genes in infectious diseases [14]. DL algo-
rithms, such as DeepARG, increase the detection of ARGs in metagenomic data by 
providing higher accuracy, precision, and recall than conventional approaches [15].  
DeepARG broadens the detection range of ARGs by using specialized models for 
whole gene sequences. Advanced computational techniques are used to combat 
antibiotic resistance with the help of developments in models like Hyper VR and 
ARGNet [16, 17]. In this section, we discussed a few other existing AI models and 
tools for ARG identification and resistant strain classification.

Pei et al. [17] developed ARGNet, a deep neural network model that utilizes gene 
sequence (GS) data to identify antibiotic-resistant genes (ARG) without sequence 
alignment. With a remarkable 95% accuracy rate, ARGNet performed better than 
DeepARG and HMD-ARG. Tharmakulasingam et al. [18] analyzed the GS data on anti-
biotic resistance in urinary tract infection (AMR-UTI) and proposed a 1D-Transformer 
model that performed better than traditional ML models, such as logistic regression 
(LR), ResNet, and 1-Dimensional convolutional neural network (1-D CNN), with a 
10% higher AUC, to identify features responsible for AMR.

Nsubuga et al. [19] used data on E. coli strains from Africa and England to exam-
ine several ML models, including LR, random forest (RF), gradient boost (GB), sup-
port vector machine (SVM), Cat Boost (CB), eXtreme gradient boosting (XG Boost), 
feed-forward neural network (FF-NN), and Light GBM (LGBM). It was discovered 
that the specific antibiotic used had a substantial impact on the model’s performance. 
With 87% accuracy and 81% precision for ciprofloxacin (CIP), Cat Boost per-
formed exceptionally well, but SVM performed best for cefotaxime (CTX) with 
100% accuracy and 92% precision, indicating that the model’s efficacy is extremely 
antibiotic-specific.

Ji et al. [16] utilized GS data and proposed Hyper VR, a hybrid deep ensemble 
learning approach that simultaneously predicts virulence factors and ARGs. It was 
observed that HyperVR performed better than the existing tools to improve patho-
gen monitoring and epidemic identification by increasing accuracy and reliability 
without depending on rigid cutoff levels.

Chung et al. [20] analyzed mass spectrometry data and proposed a matrix-assisted 
laser desorption ionization–time-of-flight mass spectrometry (MALDI-TOF MS) 
framework for the identification of ARGs in E. coli by utilizing different ML models 
like LR, RF, XG Boost, and SVM. It was observed that XGBoost performed better than 
other models with an AUC value ranging from 62% to 87% for different antibiotics. 
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Creating a prediction model that can adequately cover all isolates is a major chal-
lenge due to the tremendous variety of the E. coli population.

Al-Shaebi et al. [21] analyzed the Stanford data and proposed a U-net model for 
accurately identifying bacteria and ARG. It was found that the U-net model, when 
combined with Raman spectroscopy, achieved an accuracy of 95% compared to the 
multi-scale and ResNet models. The limitation includes low accuracy because of 
information loss during model training.

A considerable gap exists through the assessment of ML and DL models for the 
identification of genes, especially concerning computing cost, where advanced 
technologies have a higher cost than traditional approaches, model complexity, 
data availability, effective feature selection techniques, and accessibility of anno-
tated ARGs, and prediction algorithms’ accuracy in finding resistant bacteria needs 
improving. The gene expression data are complex and non-linear; thus, a novel fea-
ture selection approach is very essential and needs to be generalized and robust. 
Incorporating these limitations, our main objective is to design a complete AI pipe-
line (ARGai 2.0) that will identify the ARGs and resistant strains. In addition to this, 
our ARGai 2.0 integrates advanced computational intelligence techniques, especially 
to address the efficacy of the ensemble feature selection strategies with DL classifi-
cation models.

3	 MATERIALS	AND	METHODS

In this section, we discussed the datasets utilized in our study, their characteristics, 
and the selected AI models that are deployed on the dataset for the identification of 
resistant strains in E. coli.

3.1	 Dataset	description

The studied datasets belong to E. coli, high-throughput (NGS) GE data. The data-
set used in our study was collected from the National Centre for Biotechnology 
Information (NCBI) [22]. Our studied dataset with an accession number GSE96706 
has a total of 4501 genes, with 73 cases as resistant and 11 susceptible. In our pre-
processing phase (normalization and imputation), the final data is of 4493 genes and 
84 strains. We adopt min-max normalization and mean data imputation techniques 
in which 9 genes are removed due to more than 30% null values. After applying the 
SMOTE over-sampling techniques, we made the final dataset with 350 over-sampled 
cases in the training data; a detailed summary is in Table 1.

Table 1. Description of the studied dataset

Description #Susceptible #Resistant Total

Samples 11 73 48

Genes – – 4493

Training data 7 58 65

Train augmentation 150 200 350

Testing data 04 15 19
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3.2	 SMOTE

The synthetic minority over-sampling technique (SMOTE) [23] is a method for 
data augmentation that generates synthetic samples for the minority class to mit-
igate class imbalance. Conventional SMOTE generates synthetic instances through 
interpolation of existing samples; however, due to the high-dimensional nature of 
GE data, careful consideration is necessary when implementing this method. SMOTE 
employs a carefully designed algorithm to ensure that synthetic samples are strate-
gically located within the feature space, thereby preserving the essential expression 
patterns and interactions among genes.

3.3	 Ensemble	feature	selection

Ensemble feature selection improves accuracy and resilience by integrating var-
ious approaches for detecting varied gene patterns in high-dimensional GE data. 
It reduces overfitting, resulting in more accurate and thorough feature selection. 
Ensemble approaches produce more consistent and effective outcomes by identi-
fying physiologically significant genes and dealing with nonlinear patterns. This 
method is very useful for GE data, which is typically complicated and noisy. Finally, 
ensemble feature selection enhances the performance of classification and predic-
tion tasks in such datasets.

In our previous work, we have adopted a single feature selection technique, and 
our proposed approach identifies various significant genes with stand-alone feature 
selection models [11, 24]. However, in this work, we aim to explore the efficacy of 
the ensemble feature selection approach against stand-alone feature selection strat-
egies to identify significant genes, ARGs, and contributions towards model matrices. 
We also aim to perform the biological validation on our model-selected genes.

3.4	 Random	forest

Random forest produces reliable significance ratings and can handle high- 
dimensional, complicated datasets [25]. Its capacity to capture nonlinear links and 
interactions makes it useful for detecting key traits. The feature importance score 
I(fi) for a feature fi is calculated by summing the reduction in the Gini impurity 
(or another impurity measure) across all the nodes in the forest where that feature 
is used to split the data. Eq. 1 represents the importance of the feature fi as below,

 I f
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( ) ( )�
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t

I


�  (1)

Where:

•	 T is the total number of trees in the random forest.
•	 Nt is the set of all nodes in tree t.
•	 ∆In(fi) is the decrease in impurity at node n caused by splitting on the feature fi.
•	 I(fi) is the importance of feature.
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3.5	 eXtreme	gradient	boosting	(XGBoost)

XG Boost has strong significance metrics and can handle non-linear connections 
effectively [11, 26]. It is resistant to overfitting and ranks features based on their 
contribution to model performance. The Eq. 2 represents gain-based feature impor-
tance as below,

 I Gain
XGB
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Where:

•	 T is the total number of trees in the XG Boost model.
•	 Nt is the set of all nodes in the tth tree.
•	 ∆Gainn is the improvement in the loss function (or decrease in error) at node n 

due to splitting on feature fi.
•	 IXGB(fi) gain-based feature importance.

3.6	 Polynomial	features

Polynomial features (PF) are used to represent non-linear correlations and interac-
tions between features [27]. GE data are non-linear, and finding a correlation among 
those features is very complex. So, PF helps to extract those correlations among those 
features. By broadening the feature space to incorporate polynomial and interaction 
terms, they enable models to detect complicated patterns that linear features alone 
may miss, improving the overall capacity to choose relevant features in conjunction 
with other techniques [28]. Given an original feature vector X = x1, x2, …… , xn and 
a polynomial degree d (for our experiment it is 2), the PF transformation P(X) is 
shown in Eq. 3,

 P X x x x x x x x
n n

d( ) , , , �,
� �

� ��� ��1
1 2 1

2

1 2
   (3)

To assess the importance of polynomial features, use a model (like linear regres-
sion or decision trees) and evaluate feature importance based on model coefficients 
or feature importance.

For a linear regression model, the importance of a polynomial feature fi can be 
computed as shown in Eq. 4,

 I
P i
( ) �f

i
� �  (4)

Where:

•	 βi is the coefficient of the PF in the regression model.
•	 |βi| represents the absolute value of the coefficient, indicating the feature’s fi 

contribution to the model.

We ensure a thorough and robust selection process for optimal model perfor-
mance with our ensemble feature selection strategy, which uses polynomial feature 
expansion to capture non-linear relationships in the data and combines feature 
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importance ranking from RF and XG Boost to determine and give preference to 
the most relevant features. The feature relevance was assessed using XG Boost 
with gain-based metrics and RF with Gini impurity. An ensemble technique used 
these relevance scores to rank and choose the most significant characteristics. The 
chosen characteristics were then utilized to train and evaluate final models, and 
performance was measured using common metrics including accuracy, precision, 
and recall.

4	 PROPOSED	METHODOLOGY

In this section, we discussed the architecture of our proposed pipeline and the 
functionality of individual steps associated with ARGai 2.0. Transfer learning is the 
enhancement of learning in a new model by the transfer of information from a 
previously learned model [29]. In our proposed architecture, ARGai 2.0, we adopted 
the TL methodology with the two most widely used models, namely 1-D CNN and 
modified LSTM, for GE data analysis [30, 31].

4.1	 Data	preparation

The raw dataset comprises a substantial quantity of labeled data that is utilized to 
train a DL algorithm. In our data preparation step, SMOTE was used to oversample 
seven positive instances to 150 and 58 positive cases to 200, handling duplicates 
to increase dataset variety without duplication. Oversampling, such as from seven 
to 150 cases, is generally appropriate, but model performance must be monitored to  
ensure that these additional samples improve learning and generalization rather 
than introduce noise or overfitting. There are 200 resistant and 150 susceptible 
strains in the over-sampled training set, which is used for our model training. The 
description of raw data and SMOTE over-sampled data in the training set of our 
studied model can be visualized in Figure 1.

Fig. 1. Description of GSE96706 dataset
Notes: OS: oversampling; #: total.
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4.2	 Proposed	ARGai	2.0	model

The proposed ARGai 2.0 model includes a robust pipeline that uses GE data to 
improve the analysis and discovery of resistant genes. The process begins with data-
set preparation, which includes data augmentation and feature engineering, followed 
by feature selection using techniques RF, XG Boost, and PF for the identification of sig-
nificant genes as shown in Figure 2. The processed data is separated into three sub-
sets: training, validation, and testing. A 1D convolutional neural network (1D-CNN) is 
initially trained on the training data and is validated. In 1D-CNN, many convolutional 
layers collect discriminative features layer by layer, whereas fully connected layers 
connect these characteristics to their source labels. After the source model (1-D CNN) 
is trained, a portion of its architecture, including the learned weights, is frozen and 
transferred to the target domain (BI-LSTM-GRU). To adjust the base model to the tar-
get labels, another DL model (BI-LSTM-GRU) is added to the target model, which is 
frequently made up of thick layers [32]. The information from this base model is then 
transferred to the BI-LSTM-GRU model adopting the TL concept, which is fine-tuned 
on the target dataset. Finally, the ARGai 2.0 model’s performance is evaluated by the 
performance matrices to ensure that it accurately identifies significant genes.

Fig. 2. The pipeline of our proposed ARGai 2.0 model

Our ARGai 2.0 model is the feature selection and classifies sequences using a 
1D CNN and a bidirectional LSTM-GRU network to discover antibiotic resistance 
strains. Preprocessing and feature engineering begin with ‘Standard Scaler’ normal-
izing features, PF capturing second-degree interactions, and our proposed ensemble 
feature selection approach reducing dimensionality while maintaining 95% vari-
ance. The reshaped data is fed into a 1D CNN with four convolutional layers, ‘ReLU’ 
activation, ‘Batch Normalization,’ and ‘max-pooling’ for ‘down sampling.’

The 1D CNN model consists of four Conv1D layers with filter sizes of 32, 64, 64, and 
64, and a kernel size of 3. This is followed by Batch Normalization and MaxPooling1D 
layers. The weights of the third Conv1D layer, which contains 64 filters, utilizes ReLU 
activation, and employs ‘same’ padding, have been frozen. Freezing this layer pre-
serves its pre-learned feature extraction capabilities, enabling it to maintain the cap-
ture of intermediate-level features without undergoing updates during training. This 
method enhances the stability of the feature extraction process from this layer, min-
imizes the number of trainable parameters, and directs training efforts towards the 
remaining layers, especially the final Conv1D layer and the Bidirectional LSTM-GRU 
classifier. This strategy is designed to improve training efficiency and may enhance 
generalization by utilizing stable intermediate representations while adjusting 
higher-level features to align with the specific dataset.
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To avoid overfitting, the CNN flattens hierarchical features and passes them through 
a fully connected 128-unit dense layer with dropout. Reshaped features are supplied 
into a 64-unit bidirectional LSTM to capture sequential dependencies, followed by a 
32-unit GRU layer for temporal modeling. A dense 64-unit layer with ReLU activation 
precedes the output, and a sigmoidal activation layer classifies binary sequences. The 
Adam optimizer with a 0.001 learning rate and binary ‘cross-entropy loss’ function 
compiles the model. Early halting and learning rates decrease callbacks and increase 
training efficiency and prevent overfitting. The experimental setup of our proposed 
models with several parameter fine-tunings can be visualized in Table 2.

Table 2. The key parameters tuned in our ARGai 2.0 model

Components of ARGai 2.0 Parameter Value

CNN Layers Number of Conv1D Layers 4

Conv1D Filters 32, 64, 64, 64

First Conv 1D Layer Kernel = 3, Weight range = min 1, max 1, 
min_bias 1, max_bias 1

First Conv 1D Layer Kernel = 3, Weight range = min 2, max 2, 
min_bias 2, max_bias 2

Kernel Size 3

Activation Function ReLU

Pooling MaxPooling (Pool Size = 2)

Dropout Rate (CNN) 0.5

Dense Layer (CNN) Number of Units 128

Dropout Rate 0.5

LSTM-GRU Layers Bidirectional LSTM Units 64

GRU Units 32

Dropout Rate (LSTM-GRU) 0.5

Dense Layer (LSTM-GRU) Number of Units 64

Activation Function ReLU

Output Layer Activation Function Sigmoid

Optimizer Optimizer Adam

Learning Rate 0.001

Loss Function Binary Crossentropy

Early Stopping Patience 5

Reduce LR on Plateau Factor 0.5

Patience 3

Training Epochs 100

Batch Size 32

5	 PERFORMANCE	EVALUATION

Several of the criteria that we used to evaluate performance included the 
utilization of true positive (TP): an antibiotic-resistant strain is correctly classified, 
true negative (TN): a non-antibiotic-resistant strain is correctly classified, false 
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positive (FP): an antibiotic-resistant strain is incorrectly classified as susceptible, and 
false negative (FN): a susceptible strain is incorrectly classified into a resistant strain. 
For this study, the evaluation metrics that were applied were the F1-score (Ƒ), speci-
ficity (SP), sensitivity (SN), Matthew’s correlation coefficient (MCC), and accuracy (ɳ) 
as shown in Eq. 5–9. The diagnostic potential was evaluated by calculating the area 
under the curve (AUC) and doing an analysis of the receiver operating characteristic 
curve (ROC).

 ɳ �
�

� � �
TP TN

TP TN FP FN
 (5)

 SP
TN

TN FP
�

�
 (6)

 SN
TP

TP FN
�

�
 (7)

 � �

�
�

2 *�

*SN
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TP FN

SN
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TP FN

Ƒ  (8)

 MCC
TP TN FP FN

TP FP TP FN TN FP TN FN
�

�

� � � �
�

( * ) ( * )

( )( )( )( )
 (9)

6	 RESULTS	AND	DISCUSSION

All the studied models’ testing and training were carried out on a high-end 
computational system using Python [11]. All our experiments were carried out 
with a system having an Ubuntu 20.04 operating system, 32 GB of RAM, and 
a 1 TB SSD.

Our result section is categorized into three important parts: (i) Model evaluation 
with raw data, (ii) Effect of SMOTE over-sampling, and (iii) SMOTE and ensemble 
feature engineering (Stand-alone DL model vs. transfer learning).

i) Model evaluation with raw data: We evaluate our studied models on raw data 
to assess the efficacy of the baseline models and our proposed ARGai 2.0 model. 
Due to the null values, non-linear data, and very high-value range, the perfor-
mance of the models is impacted and results in minimal model metrics. In our 
experimental environment, we observed the highest classification accuracy of 
73% with our proposed ARGai 2.0, followed by BI-LSTM-GRU and 1-D CNN. Both 
these models achieve a classification accuracy of 72%. Notably, the sensitivity of 
these two models compared to ARGai 2.0 is high, whereas the specificity is very 
poor, as shown in Table 3 and can be visualized in Figure 3.

Table 3. Performance metrics of studied models on raw data

Models Sen Spe F-1 MCC AUC Acc

1-D CNN 96 08 83 10 58 72

BI-LSTM-GRU 90 25 82 19 44 72

ARGai 2.0 81 40 83 20 64 73
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Fig. 3. Performance metrics of all the studied models on raw data

ii) Effect of SMOTE: We assess our examined models on SMOTE-augmented data 
to evaluate the effectiveness of the baseline models and our proposed ARGai 2.0 
model. Following the application of SMOTE to rectify the unbalanced dataset 
and the elimination of null values in preprocessing, the models’ performance 
was markedly enhanced. In our experimental setting, we recorded a peak clas-
sification accuracy of 79% with our suggested ARGai 2.0 model, succeeded by 
BI-LSTM-GRU at 76% and 1-D CNN at 78%. Although BI-LSTM-GRU and 1-D CNN 
had similar sensitivity, their specificities were inferior to those of ARGai 2.0, as 
shown in Table 4.

Table 4. Performance metrics of studied models on SMOTE augmented data

Models Sen Spe F-1 MCC AUC Acc

1-D CNN 89 40 81 11 65 78

BI-LSTM-GRU 90 45 84 39 67 76

ARGai 2.0 92 67 92 59 79 79

iii) SMOTE and ensemble feature engineering: The outcome of our complete 
pipeline setup is described in this section. The ensemble feature engineering 
approach adopted in our ARGai 2.0 pipeline boosts the performance of the 
models significantly. The classification accuracy obtained by our ARGai 2.0 is 
97%, which is 24% and 18% more compared to its operation over raw data 
and SMOTE-augmented data without feature selection, respectively. Similarly, 
the stand-alone models, 1-D CNN and BI_LSTM-GRU, achieve an increment in 
classification accuracy of 5% and 10% from SMOTE-augmented data and 11% 
and 14% from raw data, respectively. The sensitivity of ARGai 2.0 with feature 
engineering and SMOTE is significant and reached 100%, which is a remarkable 
achievement during our experiment as shown in Table 5. Both the sensitivity 
and specificity of all the studied models are improved with our proposed pipe-
line, as shown in Figure 4; this proves the robustness and effectiveness of our 
approach (ARGai 2.0).

Table 5. Performance metrics of studied models on SMOTE augmented with selected features dataset

Models Sen Spe F-1 MCC AUC Acc

1-D CNN 95 56 88 58 95 83

BI-LSTM-GRU 95 62 91 63 92 86

ARGai 2.0 100 86 98 93 99 97
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Fig. 4. Performance metrics of studied models on SMOTE and top 20 selected features

Our suggested approach, ARGai 2.0, identifies the ARGs to classify the resistant- 
susceptible strains with higher model metrics and utilizes minimal computational 
time. The learning rate of ARGai 2.0 during the training phase is significant with 
the non-linear data; this proves the robustness of our model. We observed an aver-
age increment of 12.5% in classification accuracy with ARGai 2.0 compared to the 
studied stand-alone DL models together. The genes identified by ARGai 2.0 are vali-
dated in our biological validation section (Section 8). This proves our hypothesis; the 
ensemble and effective feature selection minimize the computational cost and pro-
vide significant insight (higher model metrics) into the important gene identification 
and resistant strain classification with ARGai 2.0. We also compare our proposed 
ensemble feature selection with the frequently used feature selection technique 
principal component analysis (PCA) to assess the efficacy of ARGai 2.0. It is observed 
that all the studied models perform less well with the features selected by PCA. In 
our experiment, we observe a classification accuracy gain of 6% for ARGai 2.0 with 
an ensemble feature selection technique compared to PCA as shown in Figure 5.

Fig. 5. Performance of ARGai 2.0 on different feature selection techniques

7	 RECEIVER	OPERATING	CURVES

The SMOTE model significantly improves the ARGai 2.0 model’s performance by 
providing synthetic values. Figure 6 shows the ROC performance of all the classifica-
tion models. With a p-value < 0.001, our proposed model, ARGai 2.0, attained a remark-
able AUC of 99.31%. The classification model does, however, reach an AUC of over 90% 
when trained on the SMOTE-enhanced dataset with 1-D CNN and BI-LSTM-GRU. Using 
SMOTE-supplemented data improved the classification performance of all the models, 
including the one we proposed, ARGai 2.0. The complex non-linear dataset posed chal-
lenges; however, ARGai 2.0 was able to acquire the best area under the curve (AUC) 
value while analyzing high-throughput GE data.
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Fig. 6. ROC-AUC curve of all the studied models

8	 EFFECT	OF	TRAINING	SIZE

We assess the impact of various train-test splits on the models we examined. To test 
how well the models worked, we trained them on 350 enhanced strains using the top 
20 features. Both the 1-D CNN and the BI-LSTM-GRU models require at least 280 data 
points (strains) to achieve generalization. Alternatively, as seen in Figure 7, our sug-
gested ARGai 2.0 only needs 210 strains to achieve the substantial label of model met-
rics, which is 25% less than both of the studied stand-alone DL models. This indicates 
that our ARGai 2.0 model is both versatile and reliable for making predictions.

Fig. 7. Effect of various training data sizes on our studied models
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9	 BIOLOGICAL	VALIDATION

In our study, we successfully mapped 18 out of 20 gene identifiers from the E. coli 
K12 strain to their respective gene symbols using the STRING database. This map-
ping is important for understanding the linkages and functional activities of these 
genes within the bacterial network.

Our analysis revealed that genes associated with the nitrate reductase operon 
(narU, narV, narW, narY, and narZ) exhibit the highest connectivity and interaction 
scores. This finding underscores their essential roles in nitrate metabolism under 
anaerobic conditions. The central positioning of narV within the network high-
lights its role as a hub gene, coordinating the nitrate reduction process as shown 
in Figure 8. This is consistent with previous studies that have identified the nitrate 
reductase operon as crucial for E. coli’s adaptation to anaerobic environments [33]. 
The enrichment analysis further supports this, showing significant fold enrichment 
for pathways related to the nitrate reductase complex and nitrite transmembrane 
transporter activity. For instance, the pathway “Nitrate reductase complex and nitrite 
transmembrane transporter activity” has an enrichment FDR of 3.07E-10 with a fold 
enrichment of 229.28, involving genes narV, narW, narY, narZ, and narU. This high 
enrichment indicates the critical role these genes play in nitrate metabolism [34].

In contrast, genes such as ansP (L-asparagine permease) and yncG (glutathione 
S-transferase homolog) displayed weaker interactions, suggesting more peripheral 
roles within the network. These genes, while still important, appear to be involved 
in more specialized functions such as amino acid transport and detoxification. The 
yddE gene, although moderately involved, interacts with several nitrate reductase 
genes, albeit with lower confidence, indicating a potential but less central role in 
nitrate metabolism [35]. The enrichment analysis for these peripheral genes shows 
lower fold enrichment values. For example, the pathway “Mixed, incl. family of 
unknown function (duf5445), and protein of unknown function (duf805)” involving 
ansP, yncG, and yncH has an enrichment FDR of 2.75E-05 and a fold enrichment of 
137.57. This suggests that while these genes are involved in specific pathways, their 
roles are not as central as those of the nitrate-reductase genes [36].

Fig. 8. Gene network of ARGai 2.0 identified genes
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The STRING database results provide a comprehensive view of gene interactions 
in a 2D network layout. The network illustrates that nitrate metabolism genes are 
clustered centrally, reflecting their critical role in anaerobic respiration. In contrast, 
genes involved in detoxification (nhoA), amino acid transport (ansP), and other spe-
cialized functions are more peripherally located. This spatial organization within 
the network highlights the functional landscape of E. coli, where central genes are 
pivotal for core metabolic processes, while peripheral genes contribute to a range of 
metabolic and regulatory functions [33] as shown in Figure 9.

Fig. 9. Path ways analysis of ARGai 2.0 identified genes

Our gene network analysis indicates varying levels of node degrees, with high 
node degree genes such as nar operon members being central players. This hier-
archical organization suggests that genes with high connectivity are essential for 
maintaining network stability and functionality. Conversely, genes with low or zero 
node degrees may represent specialized or independent functions, contributing to 
the bacterium’s adaptability and resilience [34]. The detailed annotation and inter-
action mapping provided by this study offer valuable insights into the functional 
organization and adaptability of E. coli. By understanding the central and peripheral 
roles of various genes, we can better appreciate the complex gene interactions that 
underpin bacterial survival and adaptation.

10	 SPECIAL	NOTES,	BENCHMARKING,	AND	LIMITATIONS

Access to diverse datasets on infections, drugs, and resistance mechanisms is crit-
ical for AMR studies; additionally, data complexity and scarcity provide obstacles, 
especially for unusual or emergent patterns. We proposed a novel ARGai 2.0 model 
that utilizes transfer learning for the identification of ARG and resistant strains. The 
key features of our proposed ARGai 2.0 model are listed below,

•	 Effective feature selection strategies (ensemble approach) of ARGai 2.0 boost the 
classification model performance by 6% compared to single feature selection  
methods.
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•	 The top 20 genes considered from the outcome of ARGai 2.0 are significant and 
may possess AMR.

•	 Integrated and fine-tuned model design of ARGai 2.0 reduces the computa-
tional time.

•	 The pathways analysis reveals the characteristics of the top 20 genes towards 
AMR and thus their chances to become ARGs.

•	 The average classification accuracy of ARGai 2.0 is 12.5% higher than the two 
studied DL models together.

•	 For analysis of GE, especially resistant strain identification, our model ARGai 2.0 
achieves a sensitivity and specificity of 98% and 94% respectively.

•	 The evaluations demonstrated that the model is dependable, generalizable, 
robust, and consistent.

In the literature, as we observed, little work is done for ARG identification using 
GE data. We benchmark our proposed ARGai 2.0 with several state-of-the-art AI 
models that utilize GE and GS data for ARG, resistant strain identification, and other 
disease gene identification (especially biomarkers in cancer), as shown in Table 6. 
Our model excels in several state-of-the-art AI models for gene identification (ARGs) 
and resistant strain classification. With a notable model metrics accuracy of 97%, 
sensitivity of 100%, and F1 of 98%, our ARGai 2.0 is an effective tool for real-time 
implementation.

Table 6. Benchmarking of our ARGai 2.0 with other state-of-the-art AI models

Authors Dataset Techniques Acc 
(%)

Pre 
(%)

Sen 
(%)

Spe 
(%)

F1 
(%)

MCC 
(%)

Wu et al. [37] GS ML X X X X X 98.3

Nayak et al. [11] GE ML/DL 93 100 87 100 93 X

Argoty et al. [15] GS DL X 97 90 X X X

Ji et al. [16] GS ML/DL X 99.8 99 X 99.4 X

Moradigaravand et al. [38] GS ML 91 X X X X X

Babichev et al. [39] GE DL 97.8 X X X X X

Amniouel et al. [40] GE ML 96 X 89 92 X X

Liu et al. [41] GE ML X X X X X X

Peng et al. [13] GS ML 97.7 X 98.2 95.8 X X

Proposed ARGai 2.0 GE DL 97 X 100 86 98 93

Notes: GS: Gene sequence; GE: Gene expression.

We observed that training the model with synthetic data might lead to better 
model metrics. In addition to this, our study has a few limitations; physicians do not 
recommend this method (the enhancement of medical data) because it is medically 
inaccurate. Additional research could rectify some biases in our model, including 
(i) the existence of relevant but smaller studies, (ii) the use of data augmentation, and 
(iii) comparisons with other well-known ML and DL models, such as deep networks 
with attention mechanisms. (iv) During our experiments we observe very little spec-
ificity compared to sensitivity; this is due to the high volume of susceptible (positive) 
data augmentation, and (vi) there are no comments on the real-time biological 
validation.
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11	 CONCLUSION

In our work, the advanced DL model, namely ARGai 2.0, has shown remarkable 
effectiveness in detecting antibiotic resistance genes (ARGs) and resistant strains in 
E. coli through the analysis of NGS GE data. The integration of advanced techniques, 
including SMOTE oversampling, ensemble feature selection, and TL, resulted in a model 
that attained high accuracy (97%) and sensitivity (100%), alongside a ROC value of 
99.31. The identification of significant genes, such as pptA, patD, ydcC, yncH, narY, and 
insH1-5, highlights the strength of our methodology. The reduced computational time 
significantly improves its applicability for extensive analyses. The real-time deployment 
of ARGai 2.0 can boost the diagnosis and drug design for patients suffering from infec-
tious diseases, especially UTIs. Considering the limitations posed by restricted GE data, 
our objective is to broaden the use of ARGai 2.0 to encompass whole genome sequence 
data. This approach has the potential to uncover more significant ARGs and enhance 
the model’s generalizability and effectiveness in addressing antibiotic resistance.

12	 DATA	AVAILABILITY	STATEMENT

The datasets analyzed for this study are freely available and can be found on 
NCBI (https://www.ncbi.nlm.nih.gov/gds/?term=GSE96706).

13	 CONFLICT	OF	INTEREST

We declare that there is no conflict of interest.

14	 FUNDING

No external funding is received for this study.

15	 REFERENCES

 [1] D. E. Bloom and D. Cadarette, “Infectious disease threats in the twenty-first century: 
Strengthening the global response,” Frontiers in Immunology, vol. 10, 2019. https://doi.
org/10.3389/fimmu.2019.00549

 [2] M. Abavisani, A. Khoshrou, S. K. Foroushan, and A. Sahebkar, “Chatting with artificial  
intelligence to combat antibiotic resistance: Opportunities and challenges,” Current 
Research in Biotechnology, vol. 17, p. 100197, 2024. https://doi.org/10.1016/j.crbiot.2024. 
100197

 [3] P. Dadgostar, “Antimicrobial resistance: Implications and costs,” Infection and Drug 
Resistance, vol. 12, pp. 3903–3910, 2019. https://doi.org/10.2147/IDR.S234610

 [4] T. R. Walsh, A. C. Gales, R. Laxminarayan, and P. C. Dodd, “Antimicrobial resistance: 
Addressing a global threat to humanity,” PLoS Med., vol. 20, no. 7, p. e1004264, 2023. 
https://doi.org/10.1371/journal.pmed.1004264

 [5] M. Paneri and P. Sevta, “Overview of antimicrobial resistance: An emerging silent pan-
demic,” Glob J of Med Pharm Biomed Update, vol. 18, 2023. https://doi.org/10.25259/
GJMPBU_153_2022

https://online-journals.org/index.php/i-joe
https://www.ncbi.nlm.nih.gov/gds/?term=GSE96706
https://doi.org/10.3389/fimmu.2019.00549
https://doi.org/10.3389/fimmu.2019.00549
https://doi.org/10.1016/j.crbiot.2024.100197
https://doi.org/10.1016/j.crbiot.2024.100197
https://doi.org/10.2147/IDR.S234610
https://doi.org/10.1371/journal.pmed.1004264
https://doi.org/10.25259/GJMPBU_153_2022
https://doi.org/10.25259/GJMPBU_153_2022


iJOE | Vol. 21 No. 1 (2025) International Journal of Online and Biomedical Engineering (iJOE) 93

ARGai 2.0: A Feature Engineering Enabled Deep Network Model for Antibiotic Resistance Gene and Strain Identification in E. coli

 [6] P. Phungoen, J. Sarunyaparit, K. Apiratwarakul, L. Wonglakorn, A. Meesing, and 
K. Sawanyawisuth, “The association of ESBL Escherichia coli with mortality in patients 
with Escherichia coli bacteremia at the emergency department,” Drug Target Insights, 
vol. 16, no. 1, pp. 12–16, 2022. https://doi.org/10.33393/dti.2022.2422

 [7] S. Sarshar, R. Mirnejad, and E. Babapour, “Frequency of blaCTX-M and blaTEM virulence 
genes and antibiotic resistance profiles among Klebsiella pneumoniae isolates in urinary 
tract infection (UTI) samples from Hashtgerd, Iran,” Reports of Biochemistry & Molecular 
Biology, vol. 10, no. 3, pp. 412–419, 2021. https://doi.org/10.52547/rbmb.10.3.412

 [8] M. Navidinia et al., “Study prevalence of verotoxigenic E. coli isolated from urinary tract 
infections (UTIs) in an Iranian children hospital,” The Open Microbiology Journal, vol. 6, 
pp. 1–4, 2012. https://doi.org/10.2174/1874285801206010001

 [9] V. Niranjan and A. Malini, “Antimicrobial resistance pattern in Escherichia coli causing 
urinary tract infection among inpatients,” Indian Journal of Medical Research, vol. 139, 
no. 6, pp. 945–948, 2014.

 [10] M. Boolchandani, A. W. D’Souza, and G. Dantas, “Sequencing-based methods and 
resources to study antimicrobial resistance,” Nat. Rev. Genet., vol. 20, pp. 356–370, 2019. 
https://doi.org/10.1038/s41576-019-0108-4

 [11] D. S. K. Nayak et al., “aiGeneR 1.0: An artificial intelligence technique for the revelation 
of informative and antibiotic resistant genes in Escherichia coli,” Frontiers in Bioscience-
Landmark, vol. 29, no. 2, p. 82, 2024. https://doi.org/10.31083/j.fbl2902082

 [12] D. S. K. Nayak, S. Mohapatra, D. Al-Dabass, and T. Swarnkar, “Deep learning approaches 
for high dimension cancer microarray data feature prediction: A review,” in 
Computational Intelligence in Cancer Diagnosis, 2023, pp. 13–41. https://doi.org/10.1016/
B978-0-323-85240-1.00018-3

 [13] Z. Peng et al., “Whole-genome sequencing and gene sharing network analysis powered 
by machine learning identifies antibiotic resistance sharing between animals, humans 
and environment in livestock farming,” PLoS Computational Biology, vol. 18, no. 3, 
p. e1010018, 2022. https://doi.org/10.1371/journal.pcbi.1010018

 [14] D. T. Do, M.-R. Yang, T. N. S. Vo, N. Q. K. Le, and Y.-W. Wu, “Unitig-centered pan-genome 
machine learning approach for predicting antibiotic resistance and discovering novel 
resistance genes in bacterial strains,” Computational and Structural Biotechnology Journal, 
vol. 23, pp. 1864–1876, 2024. https://doi.org/10.1016/j.csbj.2024.04.035

 [15] G. Arango-Argoty, E. Garner, A. Pruden, L. S. Heath, P. Vikesland, and L. Zhang, “DeepARG: 
A deep learning approach for predicting antibiotic resistance genes from metagenomic 
data,” Microbiome, vol. 6, pp. 1–15, 2018. https://doi.org/10.1186/s40168-018-0401-z

 [16] B. Ji et al., “HyperVR: A hybrid deep ensemble learning approach for simultaneously 
predicting virulence factors and antibiotic resistance genes,” NAR Genomics and 
Bioinformatics, vol. 5, no. 1, p. lqad012, 2023. https://doi.org/10.1093/nargab/lqad012

 [17] Y. Pei et al., “ARGNet: Using deep neural networks for robust identification and classifi-
cation of antibiotic resistance genes from sequences,” Microbiome, vol. 12, 2024. https://
doi.org/10.1186/s40168-024-01805-0

 [18] M. Tharmakulasingam, W. Wang, M. Kerby, R. La Ragione, and A. Fernando, “TransAMR: 
An interpretable transformer model for accurate prediction of antimicrobial resistance 
using antibiotic administration data,” IEEE Access, vol. 11, pp. 75337–75350, 2023. https: 
//doi.org/10.1109/ACCESS.2023.3296221

 [19] M. Nsubuga, R. Galiwango, D. Jjingo, and G. Mboowa, “Generalizability of machine 
learning in predicting antimicrobial resistance in E. coli: A multi-country case study in 
Africa,” BMC Genomics, vol. 25, 2024. https://doi.org/10.1186/s12864-024-10214-4

 [20] C.-R. Chung et al., “Data-driven two-stage framework for identification and characteriza-
tion of different antibiotic-resistant escherichia coli isolates based on mass spectrometry 
data,” Microbiology Spectrum, vol. 11, no. 3, pp. e03479–22, 2023. https://doi.org/10.1128/
spectrum.03479-22

https://online-journals.org/index.php/i-joe
https://doi.org/10.33393/dti.2022.2422
https://doi.org/10.52547/rbmb.10.3.412
https://doi.org/10.2174/1874285801206010001
https://doi.org/10.1038/s41576-019-0108-4
https://doi.org/10.31083/j.fbl2902082
https://doi.org/10.1016/B978-0-323-85240-1.00018-3
https://doi.org/10.1016/B978-0-323-85240-1.00018-3
https://doi.org/10.1371/journal.pcbi.1010018
https://doi.org/10.1016/j.csbj.2024.04.035
https://doi.org/10.1186/s40168-018-0401-z
https://doi.org/10.1093/nargab/lqad012
https://doi.org/10.1186/s40168-024-01805-0
https://doi.org/10.1186/s40168-024-01805-0
https://doi.org/10.1109/ACCESS.2023.3296221
https://doi.org/10.1109/ACCESS.2023.3296221
https://doi.org/10.1186/s12864-024-10214-4
https://doi.org/10.1128/spectrum.03479-22
https://doi.org/10.1128/spectrum.03479-22


 94 International Journal of Online and Biomedical Engineering (iJOE) iJOE | Vol. 21 No. 1 (2025)

Nayak et al.

 [21] Z. Al-Shaebi, F. Uysal Ciloglu, M. Nasser, and O. Aydin, “Highly accurate identification of 
bacteria’s antibiotic resistance based on raman spectroscopy and U-net deep learning 
algorithms,” ACS Omega, vol. 7, no. 33, pp. 29443–29451, 2022. https://doi.org/10.1021/
acsomega.2c03856

 [22] https://www.ncbi.nlm.nih.gov/gds/?term=GSE96706 [Accessed: 05/08, 2024].
 [23] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE: Synthetic minority 

over-sampling technique,” Journal of Artificial Intelligence Research, vol. 16, pp. 321–357, 
2002. https://doi.org/10.1613/jair.953

 [24] D. S. K. Nayak, S. P. Routray, S. Sahooo, S. K. Sahoo, and T. Swarnkar, “A comparative study 
using next generation sequencing data and machine learning approach for Crohn’s dis-
ease (CD) identification,” in 2022 International Conference on Machine Learning, Computer 
Systems and Security (MLCSS), 2022, pp. 17–21. https://doi.org/10.1109/MLCSS57186. 
2022.00012

 [25] B. F. Darst, K. C. Malecki, and C. D. Engelman, “Using recursive feature elimination in ran-
dom forest to account for correlated variables in high dimensional data,” BMC Genetics, 
vol. 19, pp. 1–6, 2018. https://doi.org/10.1186/s12863-018-0633-8

 [26] D. S. K. Nayak, A. Pati, A. Panigrahi, S. Sahoo, and T. Swarnkar, “ReCuRandom: A hybrid 
machine learning model for significant gene identification,” AIP Conference Proceedings, 
vol. 2819, no. 1, 2023. https://doi.org/10.1063/5.0137029

 [27] W. Zhou, Z. Yan, and L. Zhang, “A comparative study of 11 non-linear regression models 
highlighting autoencoder, DBN, and SVR, enhanced by SHAP importance analysis in 
soybean branching prediction,” Scientific Reports, vol. 14, 2024. https://doi.org/10.1038/
s41598-024-55243-x

 [28] L. Huang, J. Jia, B. Yu, B.-G. Chun, P. Maniatis, and M. Naik, “Predicting execution time of 
computer programs using sparse polynomial regression,” Advances in Neural Information 
Processing Systems, vol. 23, 2010.

 [29] K. Weiss, T. M. Khoshgoftaar, and D. Wang, “A survey of transfer learning,” Journal of Big 
Data, vol. 3, pp. 1–40, 2016. https://doi.org/10.1186/s40537-016-0043-6

 [30] S. A. B. Parisapogu, C. S. R. Annavarapu, and M. Elloumi, “1-Dimensional convolution 
neural network classification technique for gene expression data,” in Deep Learning 
for Biomedical Data Analysis: Techniques, Approaches, and Applications, M. Elloumi, Eds., 
Springer, Cham. 2021, pp. 3–26. https://doi.org/10.1007/978-3-030-71676-9_1

 [31] H. Wang, C. Li, J. Zhang, J. Wang, Y. Ma, and Y. Lian, “A new LSTM-based gene expression 
prediction model: L-GEPM,” Journal of Bioinformatics and Computational Biology, vol. 17, 
no. 4, p. 1950022, 2019. https://doi.org/10.1142/S0219720019500227

 [32] F. M. Alotaibi and Y. D. Khan, “A framework for prediction of oncogenomic progression 
aiding personalized treatment of gastric cancer,” Diagnostics, vol. 13, no. 13, p. 2291, 
2023. https://doi.org/10.3390/diagnostics13132291

 [33] M. Babu et al., “Genetic interaction maps in Escherichia coli reveal functional crosstalk 
among cell envelope biogenesis pathways,” PLoS Genetics, vol. 7, no. 11, p. e1002377, 
2011. https://doi.org/10.1371/journal.pgen.1002377

 [34] D. Zhang, S. H.-J. Li, C. G. King, N. S. Wingreen, Z. Gitai, and Z. Li, “Global and gene- 
specific translational regulation in Escherichia coli across different conditions,” PLoS 
Computational Biology, vol. 18, no. 10, p. e1010641, 2022. https://doi.org/10.1371/journal.
pcbi.1010641

 [35] S. Cardinale and G. Cambray, “Genome-wide analysis of E. coli cell-gene interactions,” 
BMC Systems Biology, vol. 11, pp. 1–8, 2017. https://doi.org/10.1186/s12918-017-0494-1

 [36] K. Syal, “Evaluation of interplay of gene expression and chromosome structure in E. coli 
growth: Regulatory insights,” Current Microbiology, vol. 81, 2024. https://doi.org/10.1007/
s00284-024-03773-y

https://online-journals.org/index.php/i-joe
https://doi.org/10.1021/acsomega.2c03856
https://doi.org/10.1021/acsomega.2c03856
https://www.ncbi.nlm.nih.gov/gds/?term=GSE96706
https://doi.org/10.1613/jair.953
https://doi.org/10.1109/MLCSS57186.2022.00012
https://doi.org/10.1109/MLCSS57186.2022.00012
https://doi.org/10.1186/s12863-018-0633-8
https://doi.org/10.1063/5.0137029
https://doi.org/10.1038/s41598-024-55243-x
https://doi.org/10.1038/s41598-024-55243-x
https://doi.org/10.1186/s40537-016-0043-6
https://doi.org/10.1007/978-3-030-71676-9_1
https://doi.org/10.1142/S0219720019500227
https://doi.org/10.3390/diagnostics13132291
https://doi.org/10.1371/journal.pgen.1002377
https://doi.org/10.1371/journal.pcbi.1010641
https://doi.org/10.1371/journal.pcbi.1010641
https://doi.org/10.1186/s12918-017-0494-1
https://doi.org/10.1007/s00284-024-03773-y
https://doi.org/10.1007/s00284-024-03773-y


iJOE | Vol. 21 No. 1 (2025) International Journal of Online and Biomedical Engineering (iJOE) 95

ARGai 2.0: A Feature Engineering Enabled Deep Network Model for Antibiotic Resistance Gene and Strain Identification in E. coli

 [37] J. Wu et al., “PLM-ARG: Antibiotic resistance gene identification using a pretrained pro-
tein language model,” Bioinformatics, vol. 39, no. 11, p. btad690, 2023. https://doi.org/ 
10.1093/bioinformatics/btad690

 [38] D. Moradigaravand, M. Palm, A. Farewell, V. Mustonen, J. Warringer, and L. Parts, 
“Prediction of antibiotic resistance in Escherichia coli from large-scale pan-genome data,”  
PLoS Computational Biology, vol. 14, no. 12, p. e1006258, 2018. https://doi.org/10.1371/
journal.pcbi.1006258

 [39] S. Babichev, I. Liakh, and I. Kalinina, “Applying the deep learning techniques to solve 
classification tasks using gene expression data,” IEEE Access, vol. 12, pp. 28437–28448, 
2024. https://doi.org/10.1109/ACCESS.2024.3368070

 [40] S. Amniouel and M. S. Jafri, “High-accuracy prediction of colorectal cancer chemo-
therapy efficacy using machine learning applied to gene expression data,” Frontiers in 
Physiology, vol. 14, 2024. https://doi.org/10.3389/fphys.2023.1272206

 [41] L. Liu et al., “Integrated bioinformatics combined with machine learning to analyze 
shared biomarkers and pathways in psoriasis and cervical squamous cell carcinoma,” 
Frontiers in Immunology, vol. 15, 2024. https://doi.org/10.3389/fimmu.2024.1351908

16	 AUTHORS

Debasish Swapnesh Kumar Nayak is currently an Assistant professor at the 
Department of Computer Science and Engineering, SOET, Centurion University of 
Management and Technology, Bhubaneswar, India. He is continuing his Ph.D. at the 
Department of Computer Science and Engineering, FET-ITER, Siksha ‘O’ Anusandhan 
(Deemed to be) University, Bhubaneswar, India. He obtained his M. Tech in Computer 
Science and Data Processing from Siksha ‘O’ Anusandhan (Deemed to be) University 
in 2015. He also obtained a Master of Computer Science and Application from Orissa 
University of Agriculture and Technology in 2009. He has a total expertise of 13 years 
in the field of Teaching, Research and Development, and Software Development. He 
has over 50 publications in SCIE, Scopus journals, and conferences. He served as a 
core committee member and chair in IEEE RMC-2024 and ICAIHC-2025.His research 
interests include AI for Biomedical Research, Deep Learning, Infectious Disease, 
Antimicrobial Resistance Analysis, Cancer Biology, Biomedical Engineering, IoT, and 
Data Mining. He can be contacted at email: swapnesh.nayak@gmail.com and deba-
sish.nayak@cutm.ac.in.

Arpita Priyadarshini is a Master’s (M. Tech) student at Department of Statistics, 
Utkal University, India. She holds a B. Tech degree with specialization in Information 
Technology from Silicon Institute of Technology, India. Her areas of interest in 
research are computational modeling and gene expression profiling, as well as the 
use of statistical and machine learning approaches in data analysis. She is skilled in 
statistical modeling, feature selection, R, Python, and sophisticated machine learning 
algorithms. She can be contacted at email: pri.arpita@gmail.com.

Sweta Padma Routray completed her B.Sc. and M.Sc. degrees in Bioinformatics 
at Buxi Jagabandhu Bidyadhar Autonomous College, India, in 2017 and 2019, 
respectively. Currently, she is pursuing her Ph.D. in Biotechnology at the Center of 
Biotechnology, Siksha O Anusandhan Deemed to be University. Her primary research 
interests lie in the fields of bioinformatics, microbial genomics, and transcriptomics. 
She can be contacted at email: sweta.routray6@gmail.com.

Santanu Kumar Sahoo is currently working as Associate Professor, department 
of Electronics and Communication Engineering, FET-ITER, Siksha ‘O’ Anusandhan 
University. He received his B.Tech. degree in electronics and communication 

https://online-journals.org/index.php/i-joe
https://doi.org/10.1093/bioinformatics/btad690
https://doi.org/10.1093/bioinformatics/btad690
https://doi.org/10.1371/journal.pcbi.1006258
https://doi.org/10.1371/journal.pcbi.1006258
https://doi.org/10.1109/ACCESS.2024.3368070
https://doi.org/10.3389/fphys.2023.1272206
https://doi.org/10.3389/fimmu.2024.1351908
mailto:swapnesh.nayak@gmail.com
mailto:debasish.nayak@cutm.ac.in
mailto:debasish.nayak@cutm.ac.in
mailto:pri.arpita@gmail.com
mailto:sweta.routray6@gmail.com


 96 International Journal of Online and Biomedical Engineering (iJOE) iJOE | Vol. 21 No. 1 (2025)

Nayak et al.

engineering from Utkal University, Odisha, India in 2004 and Doctoral degree in 
communication system engineering from Siksha O Anusandhan University, Odisha, 
India in 2018. His areas of interest are biomedical signal and image processing. He 
can be contacted at email: santanusahoo@soa.ac.in.

Tripti Swarnkar received the Ph.D. degree in Computer Science & Engineering 
from IIT Kharagpur WB India. She is currently a Professor in the department of 
Computer Application, National Institute of Technology, Raipur. She has more than 
two decades of teaching experience in the field of Computer Science & Engineering.  
Dr. Swarnkar’s principal research interest is Machine learning, Omics data analysis 
and Medical image analysis. Her aspiration is to work at the interface of these different 
fields or Multidisciplinary Environment. She is IEEE senior member and IEEE EMBS 
& GRSS member, she is the founder chair for IEEE Bhubaneswar Subsection WIE 
Affinity group. She was also a Principal Investigator of Multidisciplinary Project on 
“Validation of Artificial Intelligence (AI) based models in screening and diagnosis of 
diseases in routine clinical practices”, sponsored by Intel India. She can be contacted 
at email: tswarnkar.mca@nitrr.ac.in.

https://online-journals.org/index.php/i-joe
mailto:santanusahoo@soa.ac.in
mailto:tswarnkar.mca@nitrr.ac.in

