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Medical Support System for Spontaneous  
Breathing Trial Prediction Using Nonuniform  
Discrete Fourier Transform

ABSTRACT
Spontaneous breathing trials (SBTs) represent a pivotal phase in the weaning process of 
mechanically ventilated patients. The objective of these trials is to assess patients’ readiness 
to resume independent breathing, thereby facilitating timely weaning and reducing the dura-
tion of mechanical ventilation (MV). Nevertheless, accurately predicting the success or failure 
of SBT remains a significant challenge in clinical practice. This study proposes a healthcare 
system that employs machine learning techniques to predict the outcome of SBT. The model is 
trained on respiratory flow and electrocardiogram (ECG) signals, employing the non-uniform 
discrete Fourier transform (NUDFT) for frequency domain analysis. The SBT prediction model 
has the potential to significantly enhance clinical decision-making by enabling the early 
identification of patients at risk for SBT failure, achieving an accuracy of 84.4 ± 3.2%.
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1	 INTRODUCTION

Mechanical ventilation (MV) is a cornerstone of critical care medicine, providing 
essential respiratory support to patients with acute respiratory failure or conditions 
that impair their ability to breathe adequately [1, 2]. However, prolonged use of MV 
can lead to several complications, including ventilator-associated pneumonia, baro-
trauma, and muscle weakness, which together contribute to increased morbidity and 
mortality rates [3, 4]. Thus, achieving timely liberation from MV through successful 
weaning is crucial for optimizing patient outcomes and reducing healthcare costs [5].

The spontaneous breathing trial (SBT) is a critical step in the weaning process, as 
it assesses a patient’s readiness to breathe independently without ventilator support. 
During an SBT, patients are allowed to breathe spontaneously while still connected 
to the ventilator, enabling clinicians to evaluate their ability to maintain adequate 
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gas exchange and respiratory function. Successful completion of an SBT suggests 
that the patient can be weaned, facilitating the transition to independent breathing. 
Predicting SBT outcomes despite their clinical importance remains a significant 
challenge. Clinicians typically rely on subjective assessments and predefined criteria, 
which may lack sensitivity and specificity, potentially leading to delays in weaning 
or premature weaning, both of which can negatively affect patient outcomes [6, 7].

The non-uniform discrete Fourier transform (NUDFT) has emerged as a valuable 
tool in digital signal processing, offering higher resolution compared to the traditional 
discrete Fourier transform (DFT) by sampling data at non-uniform intervals in the 
time or frequency domain [8]. This technique has been successfully applied in vari-
ous fields, including spectral domain optical coherence tomography (SD-OCT), where 
it improves sensitivity and reduces processing time [9]. Additionally, NUDFT has 
shown advantages in handling under sampled data, mitigating aliasing and noise, 
and reducing memory consumption [10, 11].

This study aims to leverage the power spectral density (PSD) features extracted from 
respiratory flow and electrocardiographic (ECG) signals to develop a machine learning 
classifier that predicts a patient’s likelihood of successful weaning after an SBT. By utiliz-
ing NUDFT to analyze the irregular temporal patterns in the physiological data collected 
during SBTs, this approach offers a more precise tool for evaluating patient readiness. 
Given the critical role of SBTs in the weaning process, accurate predictions of their suc-
cess are essential not only to reduce the duration of MV but also to minimize com-
plications such as ventilator-associated infections and muscle atrophy. Failed weaning 
attempts, often resulting from premature extubation, can lead to respiratory distress, 
reintubation, and prolonged intensive care unit (ICU) stays, increasing morbidity and 
healthcare costs. Existing prediction methods, based largely on subjective judgment and 
basic physiological thresholds, frequently prove inadequate. This study aims to address 
these limitations by applying machine learning techniques and the NUDFT to respira-
tory and ECG data, offering a novel, data-driven approach to enhance the accuracy of 
SBT outcome predictions. By improving the reliability of these predictions, this study 
seeks to contribute to safer and more efficient weaning practices in critical care settings.

2	 MATERIALS	AND	METHODS

2.1	 Database

The Weandb database is derived from a study that encompassed ECG and respiratory 
flow signals from 133 mechanically ventilated patients who underwent weaning [12]. 
For each patient, eight time series were recorded, including the RR interval between 
consecutive beats of an ECG signal, inspiration time (TI), expiration time (TE), respira-
tory cycle duration (TTot = TI + TE), tidal volume (VT), inspiratory fraction (TI/TTot), mean 
inspired flow (VT/TI), and frequency-tidal volume ratio (f/VT). These parameters, derived 
from the respiratory flow signal and ECG, are measured at specific time points, resulting 
in a non-uniform time vector. This non-uniformity reflects the variability in the inter-
vals between consecutive measurements. The database comprises three distinct classes:

– The success group (Class C0) comprises 94 patients who successfully completed 
the weaning process.

– The failure group (Class C1) encompasses 39 patients who failed to sustain sponta-
neous breathing and required reconnection to the ventilator within 30 minutes.

– The reintubated group (Class C2) includes 21 patients who initially passed the 
30-minute SBT test but required reintubation and were reconnected to MV within 
the next 48 hours.

https://online-journals.org/index.php/i-joe
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Classes C1 and C2 were merged into a single failure category, as both groups experi-
enced unsuccessful spontaneous breathing followed by reintubation or reconnection 
to MV. This consolidation enhances the dataset’s clarity and relevance for distinguish-
ing between successful and unsuccessful leaning outcomes. A data-wrangling meth-
odology was implemented to eliminate outliers and identify the most continuous 
information region. Initially, all null values were removed from the dataset. Outliers 
were identified by comparing the absolute difference between each data point and 
the mean value, normalized by the standard deviation, against a predefined thresh-
old. Outliers were then replaced by the mean of the surrounding data points, calcu-
lated based on neighboring values within a specified range. During the recording of 
the respiratory flow signal time series, episodes of apnea were observed. Therefore, 
the signal was reviewed, and the longest continuous time interval was registered 
for analysis. Subsequently, uninterrupted data regions were extracted by identify-
ing gaps where the time difference between consecutive points exceeded a certain 
threshold. Each segment of consistent data was stored separately, and the longest 
uninterrupted segment was selected for further analysis. Subsequently, the signal 
data were normalized by centering them around zero (subtracting the mean) and 
scaling to unit variance (dividing by the standard deviation). This normalization was 
performed to facilitate comparison and analysis of the signals at different patients 
and time points. Figure 1 shows the time series after applying the normalization and 
data processing procedures for a patient in the success group.

Fig. 1. An example of the different time series of a patient in the success group, after preprocessing the signals. a) Frequency-Tidal  
volume ratio f/VT, b) Mean inspired flow VT/TI, c) Breathing duration TTot, d) Inspiratory fraction TI/TTot, e) Inspiratory time TI,  

f) Expiratory time TE, g) Tidal volume VT, h) Beat to beat interval RR
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2.2	 Non-uniform	discrete	Fourier	transform

The NUDFT is the non-uniform variant of the regular DFT. The NUDFT is defined as
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where, vk represents frequency in the kth spectral point, xn is the position of the nth 
sampling point, f(xn) is the magnitude of the signal at the sampled position, and F(vk) 
is the spectral intensity at the frequency.

Interpolation of signals can introduce discrepancies in the PSD of non-uniformly 
sampled signals, as shown in Figure 2, which compares the PSD of the original 
f/Vt signal from the success group with the PSD obtained using two interpolation 
methods: linear and cubic spline. Although the overall shape of the PSD remains 
consistent across the interpolated signals, significant differences are observed when 
compared to the PSD derived from the NUDFT. Specifically, in the low-frequency 
range, the amplitude of the interpolated signals is lower than that of the original 
PSD. This reduction in amplitude is likely due to interpolation, which can smooth 
out variations in the data and attenuate lower frequencies because of the approx-
imation between sampling points. Furthermore, a pronounced peak in the PSD at 
the sampling frequency appears in the interpolated signals, which is absent in the 
NUDFT-derived PSD. This peak is likely a result of interpolation artifacts, which are 
unintended distortions introduced during the process, manifesting as spurious com-
ponents within the signal. These artifacts typically manifest as false frequencies or 
exaggerated spectral content, particularly when the signal has sharp transitions or 
rapid variations. Such effects are well-documented in spectral analysis, where inter-
polation, especially when applied to non-uniformly sampled data, can inadvertently 
modify the true spectral characteristics of the signal. Therefore, due to the distortions 
introduced by interpolation, in this study, the time-frequency plot will be generated 
using the NUDFT to ensure the preservation of spectral integrity. While popular 
time-frequency representations such as the continuous wavelet transform (CWT) 
and the short-time Fourier transform (STFT) are often used, both require prior inter-
polation of the data, which can compromise the accuracy of the spectral information.

Fig. 2. Comparison of power spectral density of the f/Vt signal for a patient in the success group:  
NUDFT vs. interpolated signals using the linear and cubic spline methods
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Time-frequency representations were used to analyze the spectral evolution of the 
signals over time. A Hamming window of 100 seconds with 75% overlap was applied 
to each signal. This 75% overlap improves the temporal resolution by increasing the 
frequency of the sampling intervals, allowing more accurate detection of changes 
over time. The use of an hamming window, with its reduced spectral leakage prop-
erties and emphasis on resolution, is particularly well suited to capture the nuanced 
temporal features essential for monitoring respiratory and cardiac dynamics during 
weaning. The ability of the hamming window to minimize sidelobe levels in the 
frequency spectrum ensures that signal energy is more concentrated around its true 
frequency components, thus providing a clearer and more accurate representation 
of physiological variations within the clinically relevant time frame. Figure 3 shows 
the distribution of signal power across different frequency components over time, 
providing information on the dynamic changes in respiratory and cardiac activities 
of a patient in the success group for the eight-time series.

Fig. 3. Power spectral density as a function of time and frequency for a patient in the success group. a) Frequency-Tidal volume ratio f/VT,  
b) Mean inspired flow VT/TI, c) Breathing duration TTot, d) Inspiratory fraction TI/TTot, e) Inspiratory time TI, f ) Expiratory time TE,  

g) Tidal volume VT, h) Beat to beat interval RR

2.3	 Features	in	frequency	domain

For each 100-second time interval, the NUDFT was applied to the signal, followed 
by the computation of the PSD. The resulting time-frequency plot, like the STFT but 
utilizing the NUDFT in place of the FFT, offers a detailed representation of the signal’s 
spectral content over time. From each time segment, various spectral features are 

https://online-journals.org/index.php/i-joe


 108 International Journal of Online and Biomedical Engineering (iJOE) iJOE | Vol. 20 No. 16 (2024)

González et al.

extracted, providing valuable insights into the frequency components and enabling 
a more accurate characterization of the signal’s temporal dynamics.

Instantaneous frequency (IF). This metric reflects the frequency content of 
the signal at specific time points within the window. It provides information about 
dynamic changes in frequency over time, giving a detailed view of how the spectral 
characteristics of the signal evolve [13–14].

Mean frequency (MNF). The MNF represents the MNF weighted by the PSD. 
It serves as a central measure of the frequency distribution within the signal, 
providing summary statistics of its dominant frequency components [15].

Median frequency (MDF). The MDF is the frequency value that separates the 
power spectrum into two equal areas. It provides a robust measure of the central 
tendency of the signal in terms of frequency distribution and is less sensitive to 
outliers compared to the mean frequency.

Spectral entropy (SE). SE quantifies the complexity or randomness of the spec-
tral content. It measures the degree of irregularity or unpredictability of the fre-
quency distribution, with higher values indicating greater diversity or complexity of 
frequency components [16].

Spectral energy (SEn). SEn is calculated as the sum of the squared magnitudes 
of the spectral components. This metric provides a measure of the signal’s overall 
power and is useful in comparing the energy levels across different signals or time 
intervals [17].

Spectral contrast (SC). SC measures the difference in amplitude between the 
peaks and valleys in the spectral bands. It is computed by dividing the spectrum into 
several bands and calculating the difference between the maximum and minimum 
magnitudes within each band. This parameter helps in identifying the presence of 
harmonic structures and the distribution of energy across the spectrum.

Spectral flatness (SF). SF is the ratio of the geometric mean to the arithmetic 
mean of the power spectrum. It quantifies how flat or peaked the spectrum is, with 
higher values indicating a flatter spectrum. This metric is useful for distinguishing 
between tonal and noise-like signals, as tonal signals tend to have lower SF while 
noise-like signals have higher values.

Spectral crest factor (SCF). SCF is the ratio of the peak magnitude to the root 
mean square (RMS) magnitude of the spectrum. It indicates the presence of peaks 
within the spectrum, with higher values suggesting more pronounced peaks. This 
parameter is beneficial for identifying transient or impulsive components within 
the signal.

Figure 4 shows the frequency-domain features extracted from the f/Vt signal for 
one patient from the success group and one from the failure group. The temporal 
variability across all descriptors underscores the importance of frequency-domain 
analysis for understanding respiratory signal dynamics and differentiating between 
patients with different clinical outcomes. Such signal processing techniques are cru-
cial for identifying spectral patterns that may be indicative of a patient’s respiratory 
status, offering potential markers for prognosis and clinical intervention. Based on 
the frequency features described for each interval, the following statistical descrip-
tors are calculated to provide a comprehensive analysis of the signal properties: 
mean (M), standard deviation (Std), interquartile range (Iq), skewness (S), kurtosis 
(K), median (Me), and root mean square (RMS). A total of 448 features are extracted 
for each patient, based on seven respiratory flow signals and the RR signal, with 
each signal analyzed across eight spectral characteristics and seven statistical mea-
sures. To reduce the dimensionality of the system, the Mann-Whitney test is used to 
identify features with significant differences between groups, selecting those with a 
p value < 0.05. This nonparametric test evaluates whether two independent samples 
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come from the same distribution, which makes it suitable for comparing continuous 
or ordinal data without assumptions of normality. The Mann-Whitney test consists 
of jointly ranking all observations in both groups and comparing the sum of the 
rankings of each group to assess whether the distributions differ significantly [18]. 
It is especially effective for data with non-normal distribution or cases where the 
assumptions of parametric tests are violated. Table 1 presents the 18 most relevant 
features selected for the classification system design, based on the p-value, along 
with their mean and standard deviation.

Fig. 4. Frequency domain features extracted from the f/Vt signal. a) instantaneous frequency, b) mean frequency, c) median frequency,  
d) spectral entropy, e) energy, f) contrast, g) flatness, h) crest factor

Table 1. Feature selection summary with associated p-values

Feature Success Group Failure Group p-Value

RMS[SEn(f/VT)] 3.1978+/−0.79631 2.8025+/−0.85856 0.001488

M[SC(f/VT)] 2.8818+/−0.70932 2.5558+/−0.92075 0.0028075

Std[SC(f/VT)] 3.1001+/−0.71109 2.7687+/−0.84316 0.0075979

Iq[SC(f/VT)] 3.1533+/−0.7753 2.7436+/−0.69106 0.00015166

Std[SF(f/VT)] 0.15449+/−0.021901 0.14346+/−0.02091 0.0021704

S[SF(f/VT)] 0.15752+/−0.023798 0.14723+/−0.025574 0.001546

Iq[SF(VT/TI)] 3.9795+/−2.9673 2.8129+/−1.5528 0.0022804

Std[SCF(TTot)] 2.3755+/−0.91346 2.0102+/−0.96901 0.0046192

Iq[SCF(TTot)] 2.1977+/−0.84968 1.923+/−1.0531 0.0041111

K[SCF(TTot)] 2.4077+/−0.84053 2.061+/−1.0029 0.00084892

(Continued)
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Feature Success Group Failure Group p-Value

Iq[IF(TI/TTot)] 0.07456+/−0.022193 0.067658+/−0.02414 0.0051835

Me[MDF(VT)] 2.0443+/−0.72764 1.7788+/−0.75152 0.0058755

M[SE(VT)] 2.1856+/−0.72997 1.8544+/−0.78732 0.0021172

RMS[SE(VT)] 0.1419+/−0.027855 0.13046+/−0.023926 0.0054261

Me[SE(RR)] 4.9314+/−2.2619 4.1991+/−1.8971 0.0040158

M[SEn(RR)] 5.1656+/−2.7689 4.0335+/−1.4901 0.0011054

M[SC(RR)] 0.16797+/−0.022778 0.15646+/−0.023096 0.0055512

Iq[SC(RR)] 0.17202+/−0.026169 0.1636+/−0.026325 0.0064299

Notes: M = mean, Std = standard deviation, Iq = interquartile range, S = skewness, K = kurtosis, 
Me = median, RMS = root mean square, IF = instantaneous frequency, MNF = mean frequency, 
MDF = median frequency, SE = spectral entropy, SEn = spectral energy, SC = spectral contrast, 
SF = spectral flatness, SCF = spectral crest factor, TI = inspiratory time, TE = expiratory time, 
TTot = respiratory cycle duration, VT = tidal volume, TI/TTot = inspiratory fraction, VT/TI mean inspired 
flow, f/VT frequency-tidal volume ratio, RR interval between consecutive beats.

2.4	 Classification	system

The classification system is designed using support vector machines (SVM). This 
supervised learning algorithm searches for the optimal hyperplane that best sepa-
rates data points into different classes in a high-dimensional space. SVM works by 
identifying support vectors-data points that are closest to the decision boundary-and 
maximizing the margin (distance) between the support vectors and the hyperplane, 
which helps improve the generalizability of the model [19–20]. The Bayesian optimi-
zation algorithm was used to optimize the parameters of the SVM algorithm [21–22]. 
This method systematically searches the parameter space by constructing a prob-
abilistic model of the objective function and iteratively selecting the points to be 
evaluated based on this model. Prior to model training, the dataset was preprocessed 
by normalizing each feature to ensure all variables are on a comparable scale. The 
dataset was partitioned, with 70% allocated for training and 30% for testing. To 
address the class imbalance, class weights were adjusted within the SVM optimiza-
tion framework.

The optimization process aims to maximize the Area under the Receiver 
Operating Characteristic Curve (AUC-ROC) by adjusting critical parameters: the ker-
nel function (linear, polynomial, or radial basis function (RBF)), the regularization 
parameter (C), the polynomial order, and the kernel scale. The AUC-ROC is chosen as 
the optimization criterion due to its advantages in evaluating model performance, 
particularly in the presence of class imbalance. The AUC-ROC measures the ability 
of the model to distinguish between classes and is calculated as the integral of the 
ROC curve, which plots the true positive rate (sensitivity) against the false positive 
rate (1-specificity). By focusing on the AUC-ROC, the optimization process ensures a 
robust evaluation of the model’s discriminatory power, leading to better generaliza-
tion and performance across various thresholds. The objective function is defined to 
maximize the mean AUC-ROC between the training and test datasets, incorporating 
class weights to address class imbalance effectively. The formula for calculating the 
AUC-ROC is

Table 1. Feature selection summary with associated p values (Continued)
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where, TPR is the true positive rate and FPR is the false positive rate. The algorithms 
were implemented in Python 3.10 using the scikit-learn library, with hyperparameter 
optimization carried out through the Bayesian optimization algorithm, implemented 
via the bayes_opt package. The optimization process was executed over 100 iterations, 
beginning with an initial random search of 10 samples to initialize the model. The best 
model obtained from the Bayesian optimization algorithm comprises an RBF kernel 
with a regularization parameter C of 0.25036 and a kernel scale of 2.828. The RBF ker-
nel is characterized by its ability to handle nonlinear relationships by mapping input 
features into higher dimensional spaces. The regularization parameter C controls the 
tradeoff between achieving low training error and minimizing model complexity, thus 
avoiding overfitting. The kernel scaling parameter determines the width of the RBF 
kernel, which influences the flexibility of the decision boundary in the feature space.

3	 RESULTS

Once the architecture is selected, the model is evaluated 150 times using four-
fold cross-validation. The model is trained on three of the folds and validated on 
the remaining fold in each iteration. This process is repeated four times, with each 
fold used exactly once as a validation set. By averaging the performance metrics 
across these iterations, four-fold cross-validation provides a robust assessment of 
the model’s ability to generalize and helps mitigate problems of overfitting and 
underfitting. This approach ensures consistent performance across dataset subsets, 
providing reliable estimates for real-world applications.

Table 2 shows the metrics for validation data: accuracy, precision, recall, F1 score, 
specificity, and the area under the AUC-ROC. These metrics provide a comprehensive 
assessment of the model’s predictive performance and its effectiveness in classify-
ing instances across different datasets. Precision measures the accuracy of positive 
predictions, while recall evaluates the model’s ability to correctly identify posi-
tive instances. The F1 score, which is the harmonic mean of precision and recall, 
offers a balanced evaluation by considering both false positives and false negatives. 
Specificity measures the model’s ability to correctly identify negative cases. The AUC 
indicates the model’s capability to distinguish between positive and negative classes, 
with a higher AUC representing better overall performance. The results indicate that 
the classifier demonstrates consistent performance on both training and validation 
data sets, also indicating the model’s balanced ability to correctly identify positive 
cases and its consistent performance in predicting positive cases.

Table 2. Performance metrics of classifier on training and validation data

Metric Validation Dataset

Accuracy 84.4 ± 3.2%

Precision 85.7 ± 4.5%

Recall 87.5 ± 2.5%

F1 Score 86.6 ± 3.4%

Specificity 85.1 ± 4.1%

AUC 84.8 ± 2.4%
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Despite the promising results, certain limitations of the proposed SVM-based 
classifier should be acknowledged. Although Bayesian optimization was used to 
efficiently search the hyperparameter space and identify the optimal values for the 
regularization parameter (C) and kernel type, the model’s performance is still con-
strained by the characteristics of the dataset. Specifically, the relatively small dataset, 
particularly in the failure group, limits the generalization potential of the classifier. 
While 4-fold cross-validation provides a robust estimate of the model’s ability to gen-
eralize, the dataset’s size, especially in the failure group, may introduce biases when 
evaluating minority classes and affect the classifier’s performance on unseen data 
in real clinical settings. Future work would benefit from increasing the dataset size, 
particularly by collecting more data from patients in the failure group or employing 
data augmentation techniques to synthetically expand the dataset. In addition, the 
SVM classifier used in this study assumes a linear or nonlinear boundary defined 
by a fixed kernel. Although the RBF kernel performed well, other machine learn-
ing models, such as neural networks or ensemble methods (e.g., random forests), 
may better capture complex patterns in the data and further improve predictive 
performance.

4	 DISCUSSION

The literature review has highlighted various models developed from machine 
learning algorithms to predict the success or failure of MV weaning based on retro-
spectively collected data. These studies have employed methodologies such as neu-
ral networks, SVM, logistic regression, and deep learning, applied to both adult and 
pediatric populations. For instance, in the pediatric domain, [23] utilized machine 
learning techniques to predict weaning outcomes, demonstrating the applicability 
of advanced methods across different age groups. The dataset for this study includes 
the same variables referenced in these studies, along with additional variables such 
as ventilatory rate, peak inspiratory pressure, positive end-expiratory pressure, 
respiratory rate, and transcutaneous oxygen (O2) [24–26]. A key distinction of this 
work lies in the implementation of the NUDFT for the frequency-domain analysis of 
respiratory flow and ECG signals during SBTs. Unlike traditional Fourier transform 
methods, which assume uniform sampling intervals, the NUDFT accommodates 
irregularly sampled data—an often encountered challenge in clinical environments. 
This allows for a more accurate frequency representation of physiological signals 
and makes NUDFT comparable to the STFFT when dealing with non-uniformly 
sampled data.

This study presents a methodology for time-frequency analysis in the medical 
domain, capturing subtle signal variations that are crucial for evaluating patient 
readiness for weaning. The results of this study demonstrate that the application 
of NUDFT, combined with machine learning classifiers based on features extracted 
from the PSD of respiratory and ECG signals, allows for the accurate prediction of 
weaning success. The model metrics, including accuracy, recall, and AUC, consis-
tently show robust and reliable performance in classifying SBT outcomes. These 
results indicate that the proposed methodology not only improves prediction accu-
racy over traditional methods but also offers a more sophisticated tool for assessing 
patient readiness. The approach addresses limitations in existing methods, which 
heavily rely on subjective clinical judgment and simple physiological thresholds.

This methodology’s implementation in clinical settings offers significant advan-
tages for decision-making in ICUs. By improving diagnostic precision, this approach 
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enables continuous patient monitoring and facilitates timely interventions. 
Additionally, advances in mobile health applications for the diagnosis and manage-
ment of respiratory diseases complement the frequency-domain analysis performed 
in the ICU, extending the reach of diagnostic tools to remote settings and improving 
patient care beyond the hospital environment [27, 28].

5	 CONCLUSION

The application of frequency analysis on respiratory and ECG signals from 
patients undergoing SBT using NUDFT offers a distinct advantage over traditional 
Fourier transform methods by accommodating irregularly sampled medical data. 
This adaptation preserves essential signal characteristics, ensuring greater accuracy 
and reliability in predicting SBT outcomes, ultimately enhancing patient care and 
clinical decision-making in ICUs. The integration of advanced signal processing tech-
niques, such as NUDFT, with established clinical protocols facilitates more precise 
monitoring and informed decisions in the ICU. Additionally, incorporating machine 
learning into this framework holds significant potential to improve diagnostic and 
therapeutic capabilities in critical care, leading to better patient outcomes.

The proposed methodology introduces a novel, precise tool for analyzing 
non-uniformly sampled physiological data, which, unlike STFFT, is tailored to real-
world clinical conditions. The results demonstrate that this approach significantly 
enhances the ability to capture relevant time-frequency patterns, improving the accu-
racy of SBT outcome predictions. The combination of advanced signal processing and 
machine learning contributes to safer, more efficient weaning practices in critical care.
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