
 118 International Journal of Online and Biomedical Engineering (iJOE) iJOE | Vol. 21 No. 1 (2025)

iJOE | eISSN: 2626-8493 | Vol. 21 No. 1 (2025) |

JOE International Journal of

Online and Biomedical Engineering

Aldmour, M., Aldmour, R., Al-Zoubi, A.Y., Sedky, M. (2025). Optimizing Off-Chain Storage in Blockchain of Things Systems: Implementing Dockerized
IPFS for Enhanced Efficiency. International Journal of Online and Biomedical Engineering (iJOE), 21(1), pp. 118–131. https://doi.org/10.3991/ijoe.v21i01.53157

Article submitted 2024-08-02. Revision uploaded 2024-11-08. Final acceptance 2024-11-09.

© 2025 by the authors of this article. Published under CC-BY.

Online-Journals.org

PAPER

Optimizing Off-Chain Storage in Blockchain
of Things Systems: Implementing Dockerized
IPFS for Enhanced Efficiency

ABSTRACT
The InterPlanetary File System (IPFS) offers decentralized storage and data sharing, which
are critical for the functionality of Blockchain of Things (BCoT) systems. Despite its advan-
tages, IPFS faces challenges such as scalability, latency, and resource management issues that
hinder its effective integration into existing blockchain infrastructures. This study explores
the implementation of Docker containerization to enhance IPFS performance within BCoT
environments. An experimental testbed was established, comprising an IPFS node and an
IPFS Cluster peer deployed as Docker containers, to evaluate the latency of file operations
across various sizes and analyze containerization’s impact on data storage and retrieval
efficiency. The proposed Dockerized IPFS implementation demonstrates substantial perfor-
mance improvements over traditional systems, achieving latency reductions of up to 75%
for small files (1–256 KB) and a three-fold decrease for larger files (64 MB). Specifically, write
operations were reduced from 1000 ms to 300 ms, while read operations improved by 40%,
decreasing from 2500 ms to 1500 ms. Additionally, the containerized approach yielded lower
latency than previous standalone IPFS deployments. The study emphasizes the significance of
dynamic resource allocation in optimizing resource utilization, thereby enhancing the overall
performance of IPFS Clusters within BCoT frameworks. By leveraging Dockerized IPFS, BCoT
systems can achieve more efficient off-chain storage solutions, facilitating improved data
management and interoperability in decentralized applications.

KEYWORDS
interplanetary file system (IPFS), IPFS-cluster, Docker

1	 INTRODUCTION

Interplanetary file system (IPFS) is a decentralized file-sharing protocol with
great relevance to Blockchain applications. It is a fundamental departure from
the client-server model typical of protocols such as HTTP [1]. Instead, it provides

Mamoon Aldmour1,
Rakan Aldmour1,
A. Y. Al-Zoubi2(),
Mohamed Sedky1

1School of Digital, Technology,
Innovation and Business, The
University of Staffordshire,
Stoke-on-Trent, UK

2Princess Sumaya
University for Technology,
Amman, Jordan

zoubi@psut.edu.jo

https://doi.org/10.3991/ijoe.v21i01.53157

https://online-journals.org/index.php/i-joe
https://online-journals.org/index.php/i-joe
https://doi.org/10.3991/ijoe.v21i01.53157
https://online-journals.org/
https://online-journals.org/
mailto:zoubi@psut.edu.jo
https://doi.org/10.3991/ijoe.v21i01.53157

iJOE | Vol. 21 No. 1 (2025) International Journal of Online and Biomedical Engineering (iJOE) 119

Optimizing Off-Chain Storage in Blockchain of Things Systems: Implementing Dockerized IPFS for Enhanced Efficiency

a peer-to-peer (P2P) file-sharing method that does not rely on centralized servers.
This is achieved via multiple underlying technologies, including the Distributed
Hash Tables (DHT), MerkleDag data structures, and BitSwap protocol. The DHT
allows for efficient discovery and retrieval of content across the network. In con-
trast, MerkleDag allows for content (i.e., files and directories) to be both identified
and linked together in a way that is unique and efficient, using content identifiers
(CIDs) [2]. BitSwap, inspired by the BitTorrent protocol, allows for cooperative data
exchange between peers to improve the decentralized retrieval of data. The advan-
tages of IPFS are numerous. Firstly, it provides a system that is resistant to censorship
and has no single point of failure. Because it is a content-addressing system, every
link to a file is unique and cannot be changed; the links provided are permanent
and immutable, making them useful for archival purposes. Furthermore, because
IPFS is efficient at content distribution, less bandwidth and storage space are nec-
essary to retrieve files since they are distributed only when necessary, avoiding
redundancy [3]. In addition, using IPFS means it is possible to use cached content
offline, making it ideal for systems with limited or unstable internet access. Overall,
IPFS is a pioneering solution that provides a more robust, efficient, and accessible
file-sharing method.

This paper presents an experimental study to evaluate the performance of IPFS
in private networks. It aims to determine how well IPFS performs in local area
networks and what factors influence the performance of IPFS in private networks.
It is based on a private network built using Docker-Cluster technology [4]. IPFS
Cluster nodes build up a private libp2p-based network. They maintain a shared list
of CIDs (content identifiers) and metadata that contains which IPFS nodes currently
pin that content. When a new file is added to one of the IPFS Cluster nodes, the cluster
coordinates the replication of that content by copying it to the other two IPFS nodes.
IPFS Cluster nodes can be configured to pin content in specific locations or across all
nodes based on available storage space. This means that the location of the content
replication can be managed, and those files can be guaranteed to be kept on nodes
with adequate storage [5]. Then, the paper creates files of different sizes between
Docker containers while observing each operation’s latency. It answers how well
IPFS writes and reads the data to and from an IPFS-Cluster private network built
using Docker technology and what factors affect IPFS writing and reading perfor-
mance in private Docker networks. The paper aims to illustrate the feasibility of
using IPFS as an alternative to client-server-based file-sharing systems. It will help
to evaluate the idea of designing file-sharing applications based on IPFS-Docker for
private networks. Also, it may motivate IPFS designers to try new techniques that
can improve the file system’s performance.

2	 LITERATURE	REVIEW

Several studies have been conducted to investigate the I/O performance of IPFS
storage and to give us some significant insights into its characteristics and limita-
tions. For instance, Shen et al. [6] evaluated the behavior of IPFS from the client’s
perspective. They investigated how the file size, concurrency, node configuration,
and network topology affect the system’s throughput, latency, and scalability.
Shen et al. used a custom-built client and an IPFS cluster with diverse node config-
urations to perform their experiments. Their experiments give us essential insights

https://online-journals.org/index.php/i-joe

 120 International Journal of Online and Biomedical Engineering (iJOE) iJOE | Vol. 21 No. 1 (2025)

Aldmour et al.

into how the decentralized storage system behaves under various workloads and
scenarios. These findings significantly impact the optimization of IPFS perfor-
mance and its deployment in real-world applications. One of their findings pointed
out that increasing the data size has an essential effect on the IPFS performance,
which leads to slower retrieval. The researchers identified that the resolving pro-
cess (finding the nodes that store the data block) and the subsequent downloading
of the IPFS data block are the two main bottlenecks of the system when a file is
read from a remote node. IPFS was used to build a decentralized storage system
called ASC (academic storage cluster), explicitly designed for the academic commu-
nity. This ASC system aims to provide a secure, reliable, and scalable storage and
sharing service for research data, publications, and other academic artifacts.

The paper [7] presents the results of a pilot deployment of this system in a few
universities. The findings reveal that the system can provide a secure, decentral-
ized alternative to the traditional centralized storage solution while encouraging
collaboration and knowledge exchange in the academic community. This study
contributes to developing decentralized storage solutions for academic and
research-related applications. In another study, Lajam and Helmi [8] investigated
the performance of IPFS in private networks and the impact of private network
characteristics on the system. They identified and simulated the factors that affect
the performance of IPFS in a private network, such as network size, node degree and
latency, data retrieval time, bandwidth usage, node storage, and ranges. The simula-
tion results reveal that the private network is vital in affecting the IPFS performance
and can be tuned to enhance the system performance. For example, they showed
that the data retrieval time decreases with an increase in the node degree. IPFS was
also used to build a distributed and decentralized storage system that establishes
a unified data namespace across multiple clusters [9]. Ahmad et al. studied the
performance of reading data in the IPFS cluster. Their experiment showed that
many connected nodes do not affect the performance, but the replication factor
(how many copies of the same data block are stored in the cluster) does. The IPFS
cluster represents a set of nodes forming a single distributed storage in a network,
which is different from the regular IPFS private network, where each node has an
independent file system in the network.

3	 EXPERIMENTAL	TESTBED

The experiments are conducted on a host machine with a 4-core 2.5 GHz
i5 Intel processor, 12 GB RAM, and an SSD disk. The host machine operates on
the operating system Windows 11. Three-node IPFS Cluster containers and three
IPFS nodes are deployed on Docker Desktop. The architecture of the IPFS cluster is
shown in Figure 1. An additional container for an FTP node will be implemented
with VSFTP technology. The IPFS Cluster is configured, and its data storage and
information retrieval efficiency are analyzed. The characteristics of the closed
network environment are explored, and the roles of data storage are assigned to
each node in Docker containers. The analysis might provide some clues to the per-
formance and expansion of the IPFS system in the private network environment
and advise on implementing a decentralized storage solution in an enterprise
environment.

https://online-journals.org/index.php/i-joe

iJOE | Vol. 21 No. 1 (2025) International Journal of Online and Biomedical Engineering (iJOE) 121

Optimizing Off-Chain Storage in Blockchain of Things Systems: Implementing Dockerized IPFS for Enhanced Efficiency

Fig. 1. The architecture of the IPFS cluster

The Docker compose file specifies multiple services corresponding to IPFS nodes
(ipfs0, ipfs1, ipfs2) and IPFS Cluster P2P peers (cluster0, cluster1, cluster2). Every
service must be containerized and run in isolated execution environments. Each
IPFS node (ipfs0, ipfs1, ipfs2) is assigned to exposed ports corresponding to the
IPFS swarm, API, and gateway. The clients use these ports to communicate with
other IPFS nodes. Read operations are performed by retrieving the data from IPFS.
As previously mentioned, clients can access the content stored in IPFS through the
exposed gateway (8080, 8082, and 8083). These ports perform read operations on
the IPFS (e.g., fetching files or performing content addressing). Write operations are
performed when a new piece of data is added to IPFS. Clients need to connect to the
IPFS nodes’ API (5001, 5002, and 5003) to add a new piece of content. These API end-
points are primarily used to upload files or to add new content-addressed objects.

Interplanetary file system cluster peers (cluster0, cluster1, cluster2) depend on
their IPFS node so that they can interact with their corresponding IPFS node to
manage the data. IPFS Cluster peers help to do read operations by coordinating the
data retrieval from IPFS nodes. When a client needs to get some data from the clus-
ter, the cluster peer can retrieve the data from the IPFS node (CLUSTER_IPFSHTTP_
NODEMULTIADDRESS) and then serve the data from the Cluster REST API (9094).
So, the cluster REST API will query the IPFS node for the data and then return the
data to the client. IPFS Cluster peers handle the write operation by coordinating the
content addition among the IPFS nodes. When a client needs to add new content to
the cluster, the peer will distribute it to their corresponding IPFS nodes (CLUSTER_
IPFSHTTP_NODEMULTIADDRESS). After getting the data, the IPFS nodes add the
actual content to the IPFS network and save the data redundantly, thus promoting
the availability of the data.

Clients interacted with the IPFS Cluster through the Cluster REST API (9094)
to perform the following operations: adding, retrieving, and getting the latest
version of data; managing peers; monitoring the cluster status; the ipfs-cluster-ctl
command-line tool could also interact with IPFS Cluster to manage peers, query data,
and monitor performance. Setting up IPFS in a Docker environment with a cluster

https://online-journals.org/index.php/i-joe

 122 International Journal of Online and Biomedical Engineering (iJOE) iJOE | Vol. 21 No. 1 (2025)

Aldmour et al.

provides many benefits, such as high availability, load balancing, redundancy, fault
tolerance, and scale-out. Using the IPFS Cluster, multiple nodes could collaborate and
provide decentralized and distributed access to content. This situation was good for
scenarios where data needs to be shared and accessed among different parties. For
example, IPFS was developed to manage smart contract data. In a cluster, the nodes
will play various roles. Tracker nodes track content locations and direct requests
to the correct storage nodes. Pin nodes store the content and provide a way to rep-
licate it to avoid a single point of failure. REST API nodes expose the cluster API to
the outside world for management and monitoring. Together, all these nodes help
improve the reliability and performance of the system.

4	 EXPERIMENTAL	MATERIAL	AND	DESIGN

The materials of experiments are a series of data files passed from node to node
in a private network. These files are the ones where the writing and reading oper-
ations have been applied. There were two sizes of files, small and large. The small
file sizes were 1 KB, 4 KB, 16 KB, 64 KB, and 256 KB, and the large file sizes were
1 MB, 4 MB, 16 MB, and 64 MB. The choice of these sizes was inspired by the Lajam
and Helmy work. They represent the approximate values of specific data file sizes,
which are the subject of their research. As IPFS splits the files into 1 MB blocks, more
processing time is expected for large files. These files were created in these sizes by
manually filling their contents with random alphabetical characters. In the experi-
ments, the measurements performed for the writing and reading files were the oper-
ations carried out to and from the network by interplanetary file system.

That is, the measurements performed were the operations of reading and writ-
ing. The IPFS command ADD performed the writing operation. By adding a file,
the writing operation was performed on that file. After the file was added to the
local IPFS repository of a node, the file was made available to other IPFS network
members. The IPFS command performed the reading operation GET. This opera-
tion downloads a file from the network to the local IPFS repository of a node and
from one or more nodes that have that file. When a file was downloaded to the
local IPFS repository of a node requesting the file, that file was then available to
be accessed by other IPFS network members, and the number of contributors (file
senders) was increased as the number of file owners was increased. Figure 2 shows
the experiment operating sequentially by node 1 and node 2. Latency was measured
for all operations as the time passed from the moment the user initiated the opera-
tion to its completion, i.e., the operation completion time, which included CPU time,
I/O waiting time, and network delay.

In the case of writing and the reading operations related to IPFS, the experiment
was started with writing content to IPFS, where the writing operation was done on
an arbitrary file over three API nodes (5001, 5002, and 5003) using command-line
tools such as ipfs add to add the content into the network. For reading operations
from IPFS, first, the method considered how data would be accessed from the IPFS
network, and then the content was retrieved using the command. To access the data
from the IPFS network via the gateway ports, the ipfs cat command was followed
by the CID of the content to be retrieved. Test read operations from the IPFS Cluster
was performed by querying the data via the cluster REST API (9094). Every opera-
tion was executed individually on a single file, and the time taken was measured
and recorded.

https://online-journals.org/index.php/i-joe

iJOE | Vol. 21 No. 1 (2025) International Journal of Online and Biomedical Engineering (iJOE) 123

Optimizing Off-Chain Storage in Blockchain of Things Systems: Implementing Dockerized IPFS for Enhanced Efficiency

5	 ANALYSIS	AND	EVALUATION

The intricacies of IPFS writing operations are shown in Figures 2 and 3, which
comprehensively depict the latency for IPFS and FTP writing operations for both small
and large file sizes. One of the most critical findings from this experiment is that the
latency for writing the files to the local IPFS-Docker network and the FTP container
shows that the IPFS latencies, measured in milliseconds (ms), are higher than for FTP.
This is because of the extra functions the IPFS writing operation performs compared
to the FTP writing operation. For example, the IPFS writing operation splits the large
files into blocks, generating the CIDs for each block. On the other hand, the FTP writ-
ing function is a simple copy function. However, if we look at the IPFS latencies for
small files, the latency variation is quite noticeable because, in this case, we only have
one block. However, the latency variation is hardly noticeable for large files since
the IPFS writing operation has to handle multiple blocks. Therefore, more I/O disk
operations are being performed. This shows that writing a single large file in IPFS is
more efficient than writing many small files. The latency graphs for each file system
show that writing many large files in IPFS is less efficient. This is likely because the
IPFS writing operation has to handle many blocks of a large file, resulting in more
I/O disk operations being performed.

28.9
26.3 25.4

31

59.3

7

12 13
16

34

1 KB 4 KB 16 KB 64 KB 256 KB

LA
TE

NC
Y

(M
S)

IPFS-Docker FTP

Fig. 2. The latency for the Docker cluster and FTP writing operations for the small-size files

48.6
95.5

208.3

41
90

155

443

700

1 MB 4 MB 16 MB 64 MB

LA
TE

NC
Y

(M
S)

IPFS-Docker FTP

Fig. 3. The latency for Docker cluster and FTP writing operations for large files

Figures 4 and 5 provide a comparative analysis of latency measurements for read
operations in IPFS-Docker with Docker vs FTP and for file sizes < 256 KB and 1–64 MB,
respectively. In the case of a small file size range (see Figure 4), the latency in FTP is
only slightly less than IPFS-Docker (although this difference appears insignificant),

https://online-journals.org/index.php/i-joe

 124 International Journal of Online and Biomedical Engineering (iJOE) iJOE | Vol. 21 No. 1 (2025)

Aldmour et al.

which is most pronounced for files up to 16 KB. However, its latency increases
noticeably for sizes up to 256 KB, reducing the performance differential to almost
negligible. For larger file sizes in (see Figure 5), the latency through IPFS-Docker is
significantly lower than FTP, specifically in the range of files up to 16 MB. This perfor-
mance differential is most pronounced. By the time we started taking measurements
for 64 MB size, the gap due to performance difference between both the systems
narrowed down slightly, with FTP having a slight advantage over IPFS-Docker.

These results suggest that, while FTP shows a lower edge for smaller file sizes,
IPFS-Docker appears more efficient for larger file sizes closer to 64 MB. It is worth
mentioning that this performance characteristic stems from the content-addressed
storage system, organized in a distributed architecture of IPFS, which becomes
useful as the sizes of file transfers continue to grow. The emerging trends imply that,
from a user perspective and depending on the target use case, selecting either file
transfer protocol should necessarily consider file size. If it is data transfers of sizes
closer to 64 MB, IPFS-Docker shows more significant promise.

18
24

38

83

6 6

23
30

37

1 KB

12

4 KB 16 KB 64 KB 256 KB

LA
TE

NC
Y

(M
S)

IPFS-Docker FTP

Fig. 4. The latency for the Docker cluster and FTP reading operations for the small-size files

136 169

483

1237

45
116

408

1121

1 MB 4 MB 16 MB 64 MB

LA
TE

NC
Y

(M
S)

IPFS-Docker FTP

Fig. 5. Docker, cluster, and FTP reading operations latency for large-size files

Latency depends on several different parameters in a clustered, Docker-hosted
IPFS setup. Although a broadcast mechanism like that in the traditional BitSwap
protocol isn’t necessary—the cluster takes care of the replication anyway—nodes
create and send information to each other using BitSwap. The most crucial factor
in latency is the cluster replication strategy. When a new file is added to the cluster,
it will be replicated on several nodes, making it redundant and allowing for fault
tolerance. The behavior of the cluster will reduce the risk of every node receiving the
same data multiple times in a row, which can otherwise lead to higher latency [10].

There are also dedicated gateway ports and a cluster REST API, but they are
an access point for data retrieval, independent of the cluster’s number of nodes.

https://online-journals.org/index.php/i-joe

iJOE | Vol. 21 No. 1 (2025) International Journal of Online and Biomedical Engineering (iJOE) 125

Optimizing Off-Chain Storage in Blockchain of Things Systems: Implementing Dockerized IPFS for Enhanced Efficiency

The efficiency of replication and data distribution in a cluster has a higher impact
on latency than the number of nodes. For example, with replication managed by
the cluster, the probability of receiving redundant data packets is much lower than
without replication. Latency may improve because, dependent on the node, the
redundant dataset may not be retrieved. Other factors are the overall load placed on
the cluster, which can impact latency when the cluster must manage requests and
perform replication, and the bandwidth between Docker containers and the host
machine, which can influence latency due to network communication. IPFS Cluster
improves data availability, redundancy, and fault tolerance by creating a distributed
IPFS cluster architecture. Rather than a single IPFS node, the cluster has multiple
coordinated IPFS nodes collaborating to replicate data, thus maintaining a distrib-
uted data replication system. When a new file is added to the IPFS Cluster, the cluster
will coordinate the replication of the new file onto multiple nodes. This coordinated
replication decreases the probability of nodes receiving redundant data packets. This
is because the cluster controls the distribution of file chunks across the cluster instead
of each node distributing data. The cluster’s replication approach is a primary mech-
anism that prevents redundant data retrieval. With the cluster intelligently distribut-
ing file chunks to different nodes, the probability of nodes receiving redundant data
when serving content requests is low. This differs from the traditional IPFS broadcast
model, where more redundant data can be transferred between nodes. In addition to
replication, a cluster REST API is another access point. This further reduces latency
and has a higher impact on latency than the number of nodes [11].

Docker provides a natural way to deploy IPFS nodes, where developers can spin
up IPFS nodes inside the containers with little effort. They can leverage the power
of Docker on resource management. Overall, Docker simplifies how IPFS nodes are
running while allowing more granular control of the resource allocation for these
IPFS nodes. By setting hard and soft limits on the memory and CPU usage of IPFS con-
tainers, one can prevent IPFS nodes from consuming more resources than specified,
as illustrated in Figure 6. This action prevents the IPFS nodes from degrading the
host system performance or exhausting the resources [12].

Fig. 6. The Docker stats command returns a live data stream for running containers

This is particularly important when running multiple IPFS nodes, as this con-
figuration allows more efficient resource utilization. Furthermore, IPFS Docker

https://online-journals.org/index.php/i-joe

 126 International Journal of Online and Biomedical Engineering (iJOE) iJOE | Vol. 21 No. 1 (2025)

Aldmour et al.

can be hosted on Kubernetes, the container orchestration system. This will enable
Kubernetes to dynamically allocate resources to the IPFS nodes based on runtime
demand, automatically scaling up or down the node count to optimize the IPFS
cluster for performance and resource efficiency. This dynamic allocation spreads
the load across the available nodes so that a single node never becomes a bottle-
neck. The combination of IPFS, Docker, and Kubernetes enables scalable and robust
deployment of IPFS-based containerized applications. A closer look at the resource
utilization of containers running in an IPFS Cluster shows a more complex picture
of CPU and memory utilization, reflecting the different roles and workloads of IPFS
nodes and cluster containers. This analysis is based on our literature review and
experimental studies, demonstrating that dynamic resource allocation mechanisms
are crucial in a Docker cluster’s efficiency and scalability [13].

The CPU utilization across all three IPFS nodes (ipfs0, ipfs1, ipfs2) remains low
at 1% throughout. But a closer look at the memory utilization graph indicates that
the ipfs0, ipfs1, and ipfs2 nodes have used a significant fraction of their available
memory: ipfs0: around 6% of the available memory, which is 5.691 GB. ipfs1: approx-
imately 4.7% of the available memory. ipfs2: almost 4% of the available memory.
This high memory consumption results from the nodes managing data in data rep-
lication, block hashing, and block management. For the CPU utilization to remain
so low despite the memory utilization being high points towards the likelihood that
memory resources are a far more critical bottleneck on system performance than
CPU capacity. Such patterns are characteristic of a distributed storage system such
as IPFS, where each node has to manage metadata and store data blocks. The con-
tainers labeled cluster nodes (cluster0, cluster1, cluster2) also turn out to be sur-
prisingly lightweight regarding resource usage. The low CPU and memory usage
across the cluster nodes implies that the container running the IPFS Cluster peers
is much more efficient than the other containers running the IPFS daemons. The
containers acting as cluster peers are primarily there to maintain the metadata and
communicate with each other about the various tasks related to the IPFS Cluster,
such as coordination, managing the replication strategy, and maintaining the clus-
ter’s health. This segregated pattern of resource utilization indicates how well the
IPFS Cluster architecture distributes the computational load across its nodes based
on the functional requirements of each peer. Docker containers also have the con-
venience of changing resource allocations dynamically. For example, CPU, memory
(RAM), and storage needs can be changed on the fly and adjusted based on what is
needed. This is especially critical in allocating resources optimally. If resources can
be automatically scaled up or down when required, the IPFS Cluster can run at peak
performance and avoid wasting resources on unnecessary things. Using automa-
tion, container orchestration tools such as Kubernetes and Docker Swarm can be
leveraged to dynamically scale IPFS Clusters to adapt to workload fluctuations and
operational demands. This is especially useful for IPFS clusters because the number
of IPFS nodes and cluster containers can change over time. The cluster should be
provisioned with computational resources to execute their tasks optimally. Using
resource limits and quotas and properly deploying containers with resource profiles
in the cluster can avoid potential bottlenecks and improve cluster scalability. This
distribution optimizes the utilization of underlying hardware resources. It contrib-
utes to the stability and reliability of the IPFS Cluster by preventing resource con-
tention and ensuring fair resource utilization among the containers. In summary,
by looking at the resource utilization patterns in the IPFS Clusters, we can see a
sophisticated allocation of computational resources mirroring the different opera-
tional demands of IPFS nodes and cluster containers. The deployment of dynamic

https://online-journals.org/index.php/i-joe

iJOE | Vol. 21 No. 1 (2025) International Journal of Online and Biomedical Engineering (iJOE) 127

Optimizing Off-Chain Storage in Blockchain of Things Systems: Implementing Dockerized IPFS for Enhanced Efficiency

resource allocation mechanisms further enhances the efficiency and scalability of
Docker-Cluster environments, making adaptive resource management an important
consideration for maintaining the performance and reliability of distributed storage
systems [14]. Meanwhile, setting proper memory limits for IP’s resource manage-
ment features can help to mitigate the performance issues. Improving the cluster’s
replication strategy and optimizing the data distribution can help alleviate the
memory burden on individual nodes. Dynamic allocation of resources in the clus-
ter can be achieved through container orchestration platforms such as Kubernetes.
Another way to assign GPU resources to IPFS nodes is through a container orches-
tration platform such as Kubernetes.

6	 RESULTS	AND	DISCUSSION

The latency measurements of writing the files to the FTP container and the local
IPFS repository container are shown in Figures 7 and 8, with the name ips0 and
default port 5001, respectively, for the cluster implementation of IPFS. These figures
depict the latency of IPFS writing operations for small and large files and compare it
with the results of Lajam and Helmi [8], where the writing operations to IPFS with
the current Docker implementation are much less latent than the latter.

In addition, the two implementations had significant differences in latency
because the IPFS performance in the virtual machine (VM) and Docker container
environments depends on several key factors. In the case of VMs, the resource
allocation is done at the virtual machine level, which means that the IPFS instance
is guaranteed a certain level of performance. However, the overhead involved in
VMs is higher than the other two containers since VM technology employs another
layer of abstraction. This virtual operating system might impact the startup time and
overall efficiency.

In contrast, Docker containers share the host system’s kernel, making Docker
containers much lighter weight (than VMs) and, therefore, faster to start. Still, the
resource allocation is more dynamic depending on the host’s overall load. Storage
and network performance can be an additional factor here because Docker con-
tainers can benefit from the host’s direct access to the physical storage and network
resources. The specific IPFS workload (data size and access) can also significantly
impact the performance of both the VM and the Docker environment. Docker
containers’ startup time, isolation, and portability are generally more accessible
than VMs and the bare metal environment. However, the host resource configura-
tion is still the most critical factor determining IPFS deployment performance [15].

0

50

100

150

200

250

300

1 KB 4 KB 16 KB 64 KB 256 KB

La
te

nc
y

(m
s)

IPFS-Docker Reference [8]

Fig. 7. Latency of IPFS writing operations of small-size files in the Docker cluster implementation

https://online-journals.org/index.php/i-joe

 128 International Journal of Online and Biomedical Engineering (iJOE) iJOE | Vol. 21 No. 1 (2025)

Aldmour et al.

0

500

1000

1500

2000

2500

3000

3500

1 MB 4 MB 16 MB 64 MB

La
te

nc
y

(m
s)

IPFS-Docker Reference [8]

Fig. 8. IPFS Latency for writing large file operations in the Docker cluster implementation

In contrast, latency measurements for reading the files from the FTP and the local
IPFS repository containers are measured through the gateway ports of ipfs1 (port:
5002) and the Cluster REST API (port: 9094), respectively. It is noted that whenever
a new file is added to one of the IPFS Cluster nodes, the cluster replicates this con-
tent across the three IPFS nodes. The latency of the reading operations is shown in
Figures 9 and 10, respectively. The degree of difference in the latencies between
IPFS-Docker in the two cases was considerably high for both small and large files.
However, IPFS operations latencies in the Docker environment were reduced.

0

50

100

150

200

250

1 KB 4 KB 16 KB 64 KB 256 KB

La
te

nc
y

(m
s)

IPFS-Docker Reference [8]

Fig. 9. The latency for IPFS reading operations of small-size files in the Docker implementation

0

500

1000

1500

2000

2500

1 MB 4 MB 16 MB 64 MB

La
te

nc
y

(m
s)

IPFS-Docker Reference [8]

Fig. 10. The latency for IPFS reading operations of large-size files in the Docker implementation

Many factors can influence latency. With a cluster of IPFS in Docker where
BitSwap broadcast is irrelevant (because the cluster manages the replication), the
cluster still processes data exchanges with other nodes via BitSwap. However, how

https://online-journals.org/index.php/i-joe

iJOE | Vol. 21 No. 1 (2025) International Journal of Online and Biomedical Engineering (iJOE) 129

Optimizing Off-Chain Storage in Blockchain of Things Systems: Implementing Dockerized IPFS for Enhanced Efficiency

the cluster replicates the data will most likely affect latency. Again, when you add
a new file, the cluster will replicate it across many nodes, which is where BitSwap
is used. Because the cluster coordinates the replication, the likelihood of receiving
redundant data is much smaller than if the nodes replicated it independently, which
could improve latency.

Another factor is that there are dedicated gateway ports and a Cluster REST API
for data retrieval. How this would affect latency depends less on how many nodes
are in the cluster and more on how well the cluster replicates and distributes the data
so that nodes receive the data without redundant data packets. Because the cluster
is handling the replication, the likelihood of receiving redundant data is much less
than if the nodes shared it on their own, which would improve latency. Other factors
include the overall load the cluster is under, which can affect latency, and the band-
width between the Docker containers and the host, depending on the network com-
munication between the nodes and the host. The cluster has many nodes that can
influence latency, but because it manages the replication, its influence on latency is
moderated by how it distributes and shares the data, which could improve latency.

7	 CONCLUSION

This paper presents a novel implementation of Dockerized IPFS, demonstrat-
ing significant performance improvements in off-chain storage for Blockchain of
Things (BCoT) systems. The experimental results reveal that the IPFS-Docker imple-
mentation consistently outperforms traditional IPFS systems in both read and write
operations across various file sizes. Notably, the implementation achieves lower
latency, with the performance gap widening as file sizes increase. For smaller
files (1–256 KB), the IPFS-Docker system shows substantial benefits, particularly
in writing latency, where it achieves approximately 75% lower latency than the
reference system. This trend continues for larger files (1–64 MB), with a remark-
able threefold reduction in latency for 64 MB file operations. Specifically, the read
latency for 64 MB files is improved by 40%, while write latency is reduced to around
1000 ms—significantly faster than the over 3000 ms observed in the reference system.
These findings underscore the potential of Dockerized IPFS to enhance file transfer
efficiency within BCoT frameworks, where rapid data access and transfer are critical
for real-time applications and decision-making processes. By optimizing off-chain
storage solutions, this implementation can facilitate better data management and
interoperability among connected devices in a BCoT ecosystem.

Looking ahead, future work will focus on exploring a broader range of file and
block sizes, conducting repeated operations to ensure reliability, simulating more
realistic virtual environments with increased node counts, and examining how
limited resources impact IPFS performance. This study aims to refine further distrib-
uted storage solutions tailored to the unique demands of BCoT systems, ultimately
enhancing their scalability and efficiency.

8	 REFERENCES

 [1] Q. Zheng, Y. Li, P. Chen, and X. Dong, “An innovative IPFS-based storage model for
blockchain,” in 2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI),
2018, pp. 704–708. https://doi.org/10.1109/WI.2018.000-8

https://online-journals.org/index.php/i-joe
https://doi.org/10.1109/WI.2018.000-8

 130 International Journal of Online and Biomedical Engineering (iJOE) iJOE | Vol. 21 No. 1 (2025)

Aldmour et al.

 [2] H.-S. Huang, T.-S. Chang, and J.-Y. Wu, “A secure file sharing system based on IPFS and
Blockchain,” in Proceedings of the 2020 2nd International Electronics Communication
Conference, 2020, pp. 96–100. https://doi.org/10.1145/3409934.3409948

 [3] G. Pandey, G. Sahu, and M. Singh, “Improving data integrity of IPFS on-chain proof,”
in 2023 6th International Conference on Contemporary Computing and Informatics (IC3I),
2023, pp. 171–177. https://doi.org/10.1109/IC3I59117.2023.10398081

 [4] Q. Xu, Z. Song, R. S. Mong Goh, and Y. Li, “Building an ethereum and IPFS-based
decentralized social network system,” in 2018 IEEE 24th International Conference
on Parallel and Distributed Systems (ICPADS), 2018, pp. 1–6. https://doi.org/10.1109/
PADSW.2018.8645058

 [5] S. Bhadula, S. Sharma, and A. Johri, “Hybrid blockchain and IPFS for secure industry 4.0
framework of IoT-based skin monitoring system,” in 2023 9th International Conference
on Advanced Computing and Communication Systems (ICACCS), 2023, pp. 41–47. https://
doi.org/10.1109/ICACCS57279.2023.10112751

 [6] J. Shen, Y. Li, Y. Zhou, and X. Wang, “Understanding I/O performance of IPFS storage:
A client’s perspective,” in 2019 IEEE/ACM 27th International Symposium on Quality of
Service (IWQoS), 2019, no. 17, pp. 1–10. https://doi.org/10.1145/3326285.3329052

 [7] A. Von Tottleben, C. Ihle, M. Schubotz, and B. Gipp, “Academic storage cluster,” in 2021
ACM/IEEE Joint Conference on Digital Libraries (JCDL), 2021, pp. 278–279. https://doi.
org/10.1109/JCDL52503.2021.00034

 [8] O. Abdullah Lajam and T. Ahmed Helmy, “Performance evaluation of IPFS in private
networks,” in 2021 4th International Conference on Data Storage and Data Engineering
[Preprint]. 2021, pp. 77–84. https://doi.org/10.1145/3456146.3456159

 [9] A. P. Ahmad, A. A. Ilham, and A. W. Paundu, “Analysis of blockchain and interplane-
tary file system (IPFS) utilization for big data architecture optimization,” in 2023 IEEE
International Conference on Communication, Networks and Satellite (COMNETSAT), 2023,
pp. 652–657. https://doi.org/10.1109/COMNETSAT59769.2023.10420785

 [10] H. Shin, M. Lee, and S. Kim, “Space and cost-efficient reed-solomon code based distributed
storage mechanism for IPFS,” in 2023 14th International Conference on Information
and Communication Technology Convergence (ICTC), 2023, pp. 1165–1169. https://doi.
org/10.1109/ICTC58733.2023.10392473

 [11] W. Kim, A. Kwak, B. Yoo, and H. Ko, “IPFS Viewer: IoT surveillance camera system using
IPFS and MQTT,” in 2024 IEEE International Conference on Consumer Electronics (ICCE),
2024, pp. 1–6. https://doi.org/10.1109/ICCE59016.2024.10444244

 [12] K. Sivasankari and V. S. Sathyamithran, “IPFS enabled robust mechanism for file storage
and retrieval using block chain,” in 2022 Fourth International Conference on Emerging
Research in Electronics, Computer Science and Technology (ICERECT), 2022, pp. 1–5. https://
doi.org/10.1109/ICERECT56837.2022.10059644

 [13] J. Tang, T. Jia, H. Chen, and C. Wei, “Research on big data storage methods based on IPFS
and blockchain”, in Proceeding of the 2020 2nd International Conference on Video, Signal
and Image Processing (VSIP ’20), NewYork, NY, USA: Association for Computer Machinary,
2021, pp. 55–60. https://doi.org/10.1145/3442705.3442714

 [14] P. Kumar, M. Gupta, and R. Kumar, “Improved cloud storage system using IPFS for
decentralised data storage,” in 2023 International Conference on Data Science and Network
Security (ICDSNS), 2023, pp. 1–6. https://doi.org/10.1109/ICDSNS58469.2023.10245317

 [15] S. Routray and R. Ganiga, “Secure storage of Electronic Medical Records (EMR) on inter-
planetary file system (IPFS) using cloud storage and blockchain ecosystem,” in 2021
Fourth International Conference on Electrical, Computer and Communication Technologies
(ICECCT), 2021, pp. 1–9. https://doi.org/10.1109/ICECCT52121.2021.9616690

https://online-journals.org/index.php/i-joe
https://doi.org/10.1145/3409934.3409948
https://doi.org/10.1109/IC3I59117.2023.10398081
https://doi.org/10.1109/PADSW.2018.8645058
https://doi.org/10.1109/PADSW.2018.8645058
https://doi.org/10.1109/ICACCS57279.2023.10112751
https://doi.org/10.1109/ICACCS57279.2023.10112751
https://doi.org/10.1145/3326285.3329052
https://doi.org/10.1109/JCDL52503.2021.00034
https://doi.org/10.1109/JCDL52503.2021.00034
https://doi.org/10.1145/3456146.3456159
https://doi.org/10.1109/COMNETSAT59769.2023.10420785
https://doi.org/10.1109/ICTC58733.2023.10392473
https://doi.org/10.1109/ICTC58733.2023.10392473
https://doi.org/10.1109/ICCE59016.2024.10444244
https://doi.org/10.1109/ICERECT56837.2022.10059644
https://doi.org/10.1109/ICERECT56837.2022.10059644
https://doi.org/10.1145/3442705.3442714
https://doi.org/10.1109/ICDSNS58469.2023.10245317
https://doi.org/10.1109/ICECCT52121.2021.9616690

iJOE | Vol. 21 No. 1 (2025) International Journal of Online and Biomedical Engineering (iJOE) 131

Optimizing Off-Chain Storage in Blockchain of Things Systems: Implementing Dockerized IPFS for Enhanced Efficiency

9	 AUTHORS

Mamoon Aldmour is with the School of Digital, Technology, Innovation, and
Business. The University of Staffordshire, Stoke-on-Trent, UK.

Rakan Aldmour is with the School of Digital, Technology, Innovation, and
Business. The University of Staffordshire, Stoke-on-Trent, UK.

A. Y. Al-Zoubi is with the Princess Sumaya University for Technology, Amman,
Jordan (E-mail: zoubi@psut.edu.jo).

Mohamed Sedky is with the School of Digital, Technology, Innovation, and
Business. The University of Staffordshire, Stoke-on-Trent, UK.

https://online-journals.org/index.php/i-joe
mailto:zoubi@psut.edu.jo

