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PAPER

Enhancing Real-Time Data Analysis through Advanced 
Machine Learning and Data Analytics Algorithms

ABSTRACT
This paper investigates the amalgamation of sophisticated machine learning and data analytics 
algorithms to enhance real-time data analysis across diverse domains. Specifically, it concen-
trates on the utilization of machine learning methods for real-time data analysis, encom-
passing supervised, unsupervised, and reinforcement learning algorithms. The research 
underscores the significance of instantaneous processing, analysis, and decision-making in 
contemporary data-centric environments spanning industries like defense, exploration, pub-
lic policy, and mathematical science. The paper explores data analytics strategies for real-time 
data analysis, including descriptive analytics, diagnostic analytics, predictive analytics, and 
prescriptive analytics. Descriptive analytics techniques are explored for summarizing and 
visualizing extensive sensor data, while diagnostic analytics methodologies focus on detecting 
anomalies and irregular patterns in real-time data streams. Predictive analytics endeavors 
to predict forthcoming events based on historical data trends, thereby enabling proactive 
decision-making. Lastly, prescriptive analytics provides decision recommendations and opti-
mization tactics grounded in predictive models and constraint logic. By offering a comprehen-
sive examination of machine learning techniques and data analytics methodologies, the paper 
furnishes insights into augmenting real-time data analysis capabilities across various sectors. 
Additionally, it presents a case study on processing real-time data from an environmental 
monitoring system, illustrating the practical application of advanced machine learning and 
data analytics algorithms for proactive decision-making and environmental management.

KEYWORDS
real-time data analysis, machine learning, data analytics, supervised learning, unsupervised 
learning, reinforcement learning

1	 INTRODUCTION

One of the most important issues in real-time data analysis is to provide timely 
results that are useful and consistent with recent data [1, 2]. Therefore, real-time 
data analysis relies on approximate real-time algorithms that are proposed to 
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analyze data within a certain delay from the time of the data collection [3, 4]. Since 
the collected data is usually on a big data scale, it takes too much time for the exact 
big data algorithms to achieve results [5, 6]. These real-time algorithms are usually 
significantly more intricate compared with their batch analogs and demand novel 
developments in machine learning theory and algorithm research [7, 8]. Moreover, 
existing single-step real-time algorithms offer insight into the relationship among 
features in an available window and provide knowledge from either a large number 
of small data of low velocity or a small number of large data of high velocity [9]. For 
predictive modeling, either noisy, shrinking-window algorithms are exploited, or 
standard batch algorithms must be performed on small windows of data, which con-
sider the most recent history of the stream as the only desirable information [10, 11].

Analyzing real-time data from a variety of sources using machine learning and 
data analytics algorithms represents one of the major challenges and promising 
opportunities in the research area of big data analysis [12, 13]. Real-time data anal-
ysis is a major part of a more general trend towards real-time data management 
(RTDM), where either acquiring, storing, analyzing, or querying data is not per-
formed using traditional batch-based processing but instead uses real-time (or near-
real-time) processing [14]. The main characteristic and challenge of real-time data 
analysis is to process data as they are collected and provide immediate knowledge 
and actionable information to domain experts, decision-makers, or devices [15]. 
To tackle the challenges of real-time data analysis, various machine learning algo-
rithms and data analytics methods have been exploited, including but not limited 
to clustering methods, classification methods, regression methods, outlier detection, 
dimension reduction, and so on [16, 17].

Due to the volume, velocity, and variety aspects, the integration of machine learn-
ing and data analytics has emerged as an essential research field to facilitate and 
automate data-driven inferences in real time [18]. The new shift towards cloud com-
puting, empowered by fast data analysis systems, has thus motivated these solutions 
to operate continuously in a real-time fashion, enabling automatic decision-making 
and autonomous adaptation based on data the assets were created in real-time [19]. 
When dealing with real-time big data, the key challenges are linked mainly to the 
capability of the algorithms to find appropriate and robust lower-dimensional input 
representations or to keep the models relatively small with reduced latency require-
ments. Data-driven inferences based on streaming raw data analysis can indeed 
facilitate innovations and obtain meaningful efforts. After all, operating in real-time 
implies that the system should react to the assessment of the incoming data, and the 
learned models should be capable of providing timely answers in a way that meets 
practical requirements and real-world needs such as reducing power consumption 
and improving social inclusion [20].

The major technological advancement attested in different spheres of life, in terms 
of human-enabling systems, is transforming data into effective knowledge [21]. The 
real-time capture, analysis, and interpretation of big data streams currently avail-
able in large volumes have emerged as challenging issues in different fields of 
application, such as biological signal monitoring, meteorological data capture, high- 
frequency financial market analysis, and sensor networks. Especially, huge amounts 
of data generated and captured in real-time from the Internet of Things (IoT) 
devices (e.g., vehicles, mobile phones, wearable health and fitness devices, smart 
home appliances) are available from fixed and mobile resources, opening up new 
opportunities and challenges in several areas, such as recommendation and other 
decision-making tasks, remote health monitoring, environmental sensor networks, 
and real-time identification of events in large venues [22, 23].
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The last proposed high-level methodology is a derived machine learning tech-
nique that allows for pause and restart. This interrupted model training creates 
opportunities to optimize processing data flows at more efficient sessions, where 
the models can validate data requirements or data requests for active learning [24]. 
This is further augmented by the use of an active learning request tagging strat-
egy, resulting in a recursive pipeline work talk model. The third proposed research 
methodology is towards reducing drifts within machine learning models. The con-
cept challenges in processing real-time data feeds using advanced machine learning 
models like the random tree family of models require a degree of convergence [25]. 
This model development delay usually results in drifts, which, apart from model 
accuracy, also affects downstream analytics. The second proposed technique is 
the use of a multi-queue buffer with dynamic priority scheduling for processing 
time-sensitive workloads. The technique is non-intrusive, adaptive, and scalable and 
can be augmented with process migration inverse caching to further optimize data 
processing applications. The first proposed data management methodology is based 
on a tuned data format detection algorithm. This can increment existing data man-
agement frameworks that use a default data encoding, thereby improving feature 
extraction time, especially for pipelines that involve metadata searches.

This paper is targeted at the development of enhanced reliability and perfor-
mance for real-time data processing and analytics. It involves data management/
feature extraction, machine learning model development, and data analysis. The 
scope includes real-time data feeds (structured, semi-structured, and unstructured) 
such as financial trading data, sensor readings, event logs, and user-generated con-
tent. Real-time data feeds are mostly high velocity and high volume and come in a 
variety of formats (mostly JSON, CSV, and textual logs).

2	 FOUNDATIONS	OF	REAL-TIME	DATA	ANALYSIS

With the real-time analysis of high-velocity, high-volume data, termed teleme-
try data, a key enabler of agile and informed decision-making, the need for faster 
and more accurate knowledge extraction algorithms has never been more crucial. 
Technologies employed for real-time analysis, such as Hadoop-based systems, paral-
lel processing, data streaming technologies such as Apache Kafka, and microservice 
architectures, have progressed in leaps and bounds in recent years, and real-time 
data collection and storage are now fundamental components of modern Big Data 
environments [26]. Meanwhile, the technology used for real-time data analysis itself 
is much less mature. While traditional data mining and machine learning tech-
niques are not suitable for deployment in real-time systems, rule-based systems 
that trade accuracy for speed or require knowledge and tuning cannot handle the 
increasing complexity, size, and rate of real-time data coming from different sources. 
Furthermore, time series data and multimedia data, such as audio and video, in real-
time systems are not adequately addressed [27].

Real-time data analysis refers to the capture, analysis, and interpretation of data 
in real-time, during which the data is captured, processed, and analyzed as it is gen-
erated. This involves the use of techniques and algorithms to extract useful infor-
mation from limited, high-velocity, and heterogeneous data streams generated due 
to the constant and growing presence of interconnected devices and systems. This 
form of analysis provides users with timely information to be acted upon before data 
becomes completely irrelevant. The ability to exploit the potential of real-time data 
analysis of marginally unstructured and complex data is essential to all commercial 
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and scientific organizations that are involved in forecasting, decision-making, 
and situational awareness efforts in rapidly changing environments. Information 
extracted from real-time data analysis can be utilized in a wide range of diverse 
fields, including data-driven processes, the Internet of Things (IoT), event process-
ing, informatics, sensing, and situational awareness [28, 29].

2.1	 Basic	concepts	and	definitions

Different techniques exist to describe time series from numerous fields. However, 
to date, no unique definition of a time series exists. This may be due to the heteroge-
neous conceptualization of a time series in various fields. Vars, during specific time 
intervals. Generally, a time series is expressed as a sequence of values of a variable 
at different locations of a time interval. Each of these values depends on a time-order 
relation [30, 31].

In the present section, we provide some basic definitions. For the reader’s con-
venience, it is important to note that a time series T is usually represented by a 
function of time, f(t). Given specific starting and ending dates, T is defined as a list 
of f(ti) for t = tn in which the terms are uniformly sampled. Thus, it is common to 
consider an instantiated time series such as T = f(ti), for tni = ti = 1. f(ti) is not random 
and has a deterministic component and a stochastic component. By subtracting the 
deterministic component from f(ti), a residue Δf(ti), which represents the stochastic 
aspect of data, is obtained. These residues are the desired objects of analysis as they 
constitute the real random process that is being observed. The residue samples can 
be regarded as the realization of a statistical experiment. A very simple example of 
a time series is a 1/f α signal, or pink noise, which is expressed by the superposition 
of sinusoids with 1/f α decay.

2.2	 Key	challenges	and	opportunities

Real-time intelligence on the economic reality: an analysis of the sentiment in 
real time increases the potential to support economic policymaking. Systemic crisis 
management is facilitated by access to first-line data, ideally in real time. Real-time 
forecasting, including nowcasting during crises, is facilitated by access to robust, 
real-time data and could stop certain negative dynamics from morphing into a 
global or regional event. Application of production models, including GDPM, sug-
gests that data on real-time economic activity have significant predictive power 
of economic growth in the short term. Supervision: real-time warning systems 
developed to help with early intervention and market supervision points to the 
importance of identifying the best available data sources for systemically import-
ant institutions. The risks pointed out in the paper are not unique in financial ser-
vice delivery by systemically important institutions. Therefore, the observations 
are equally important for the sustained, timely delivery of the banking institution 
enterprise [32].

Key challenges related to this objective include inadequate real-time data analy-
sis, inability to correlate different types of data, and inability to analyze secondary 
data. Adequate tools for running and presenting real-time analytics are important 
for standardization–and for users of evidence for risk landscapes–which must be 
accessible in practice. Timeliness in these contexts depends on the speed with which 
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intelligence tools can answer essentially simple questions. Inability to correlate data 
of different types due to data silos, sectoral determination, and freedom of location 
of data on resources means that useful information can go unnoticed. This might be 
the case for the discovery of fraudulent transactions, for example, when data is iso-
lated, which opens up business opportunities. The more data sources and types used 
by the analytical model, the better for the performance of the model.

3	 MACHINE	LEARNING	TECHNIQUES	FOR	REAL-TIME	DATA	ANALYSIS

Unsupervised techniques for machine learning algorithms are designed to 
enable the identification of patterns within the data without necessarily projecting 
said patterns to other datasets [33]. Clustering models are a type of unsupervised 
learning model that is used to group objects in such a way as to maximize the object-
to-object distance within each cluster while minimizing the object-to-object distance 
between clusters. Due to the absence of a decision-determining set of labeled data, 
the clustering algorithm is designed to create a model that describes the characteris-
tics of a set of input data and to use the characteristics of the input data to generate 
division classes. In the smart grid framework, the clustering model is used for cre-
ating asset groupings and applications that have the potential to cluster advantages, 
including service organization helps, templated performance analysis, and predic-
tive asset management, among others [34].

As we have highlighted in the introduction, the need for processing, analysis, 
and decision-making in real-time is more critical today than ever before. This need 
is seen across numerous application areas, such as defense and national security, 
exploration organizations, and public policy, as well as in the domain of mathemat-
ical science. Over the past few years, much attention has been given to the tech-
niques used to perform the data analysis needed in various search, mining, and 
analysis applications since machine learning techniques are key in this domain. 
Machine learning leverages the construction and study of algorithms and models 
used to enable a computer to perform some tasks without providing explicit instruc-
tions or relying on a finite set of rules-based coded instructions.

3.1	 Supervised	learning	algorithms

Naive bayes is a type of classifier based on Bayes’ theorem [35]. Simple, its results 
can be surprisingly good. It computes probabilities of inclusion in the various classes 
(e.g., spam versus not spam) and picks the best one using those probabilities. It is 
also applicable to multiple classes (but not all loss functions work with multi-class 
models—some avoid predicting the lowest-probability class).

•	 Logistic regression is the simplest algorithm. It has high bias/low variance. On a 
classification task with two classes, with a high final cost of false positives and 
false negatives, the predicted probabilities can be used in the final decision.

•	 Classification tasks assign an instance to a single category from a finite (usually 
small) list. Class = category. – Is the new document spam or not spam? – Is the 
customer at risk of leaving or not?

•	 Training sample, also called training a set; used to train a model; it is a collection 
of N examples.

https://online-journals.org/index.php/i-joe
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•	 Data Set (D), a collection of labeled feature vectors, and possibly expected outcome 
(response). Label = outcome value (also called class or category label). An exam-
ple or observation = (xi, yi), where xi is a feature vector and yi is a label. Feature 
vector xi has p known features, or covariates or predictors (components), and an 
unknown outcome y.

In the preceding section, we organized many supervised learning algorithms into 
four categories and laid the groundwork for advanced real-time analysis by explain-
ing terms used. They include:

3.2	 Unsupervised	learning	algorithms

ReliefF is capable of performing both supervised and unsupervised feature selec-
tion. It can quickly rank features in the presence or absence of labeled data such as 
class labels. The unsupervised version first operates based on a partially partitioned 
feature space, in a manner comparable to many clustering algorithms, and then per-
forms a refinement process that is quite similar to the learnable attribute distance 
learning process employed by the supervised variant with only a handful of criti-
cal differences. Both versions become an illustrative example of feature selection in 
unsupervised learning models that operate on high-dimensional data. Blur detec-
tion, matching validation, and conservative hypothesis testing could also potentially 
require special in-process controls, which, as a working practice in the data-mining 
community indicates, may be decided by the user in those circumstances where the 
expected outcomes of a data-mining model are marginally defined [36].

Unsupervised learning involves the training of an algorithm on an unlabeled 
dataset. By developing a model based on the raw input data, extreme testing, and 
subsequent cluster analysis, unsupervised learning algorithms can uncover novel 
information. Even though perhaps the most prominent example is k-means clus-
tering, many methods exist. Outside the space of clustering, unsupervised learning 
includes less complex tasks such as dimensionality reduction as well as associat-
ing and emerging sub-disciplines such as generative modeling, in part trained to 
generate similar data to their training set. Unsupervised clustering problems could 
classify observations to a finite number of groups. Allowing for the categorization, 
the models will start to make assumptions about the data-generating scheme and 
penalty anomalies, anomalies that must be offered to the domain expert for review 
and qualification.

3.3	 Reinforcement	learning	algorithms

However, because many real-world decision problems (data analysis problems) 
have functional approximation in continuous state and action spaces, and the learn-
ing has to proceed from actual experiences, reinforcement learning algorithms are 
usually designed with sampled data and artificial function approximators to serve 
as a software tool. Finally, an effective approximator is proposed, and real-time data 
analysis uses it in a reinforcement learning algorithm to seek a good policy for the 
real system [37].

We can use a statistical model, if necessary, to represent the general properties 
of the data-generating process or when several function approximators are applied 
to represent some values of policy in the tasks. Reinforcement learning algorithms, 
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thus, under this practical embedding, can be designed to solve many problems in 
various real areas, where the data is usually collected by real-time systems, includ-
ing financial analytics, adaptive websites, robotics, and even online games.

In general, given a data stream from the repository, the goal is to return a policy 
that can be occasionally used to drive real-time problems for sequential decision 
problems that typically yield useful control actions, rather than driving a generative 
model that represents all the details of the sample data.

In this section, we describe reinforcement learning algorithms with temporal- 
difference learning for real-time data analytics. Many real-time data analytical prob-
lems are naturally formulated as decision processes through the following proce-
dure. Given a data stream generated from a data repository, at certain times, some 
actions need to be taken. After the actions are taken, the system receives feedback 
depending on previously taken actions and needs to take this feedback into consid-
eration when taking actions at the next times. In this sense, immediate feedback for 
each action taken by reinforcement learning serves the purpose of searching for 
an effective policy.

4	 DATA	ANALYTICS	APPROACHES	FOR	REAL-TIME	DATA	ANALYSIS

Real-time data analysis helps to produce meaningful and actionable insights 
immediately from the massive amounts of rapidly generated data from various 
sources. Data analytics techniques can analyze this data, providing the basis for real-
time decision-making. This section provides an overview of emerging approaches 
in this area, including advanced machine learning algorithms, data analytics tech-
niques, and big data platforms as a service. We provide a case study on processing 
and analyzing real-time data generated from an environmental monitoring system. 
The real-time data analysis model developed in the case study will enable users to 
access and analyze sensor data in real time. It can support environmental monitor-
ing to reduce human exposure to harmful gases and proactively control the quality 
of the living environment. It could be incorporated into various applications to pro-
actively monitor and control the living environment, such as air purification sys-
tems or developing mobile applications so that users can receive an alert when the 
concentration of the harmful gases exceeds a predefined level.

4.1	 Descriptive	analytics

Exploratory data analysis has proved indispensable in the data analysis pro-
cess. Real-time methods are not coming easily, though; overuse of ranking statistics 
and data visualization techniques can emphasize the wrong aspect of the data. For 
time-ordered sensor data streams, specific time series visualizations are beneficial; 
for example, serial plots with sorted lines can provide a global view of complex 
networks. The use of random projections is little known and is often underused. 
It has great potential for real-time and rapid visual exploratory analysis of data 
streams since arbitrary dimensional data projection is enabled, and visualization 
performance is optimized. Along with or from visualization, data properties such as 
density estimation, ranking statistics of the space-filling curves, and palette explora-
tion are often derived. The use of summary statistics averaging and traditional data 
distribution statistics should also be carefully enhanced to avoid related concerns 
such as reactivity, coding errors, and finiteness [38].
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Descriptive and exploratory data analysis are simple and efficient methods for 
transforming voluminous sensor data into a few key summary statistics or easy-to-
read visualizations. These statistics and visualizations can be used by scientists or 
casual users to better understand the data. For data streams and sensor data, multi-
variate numerical properties are often claimed: mean, median, variance, maximum, 
and minimum value. Batches of data can be described further through data proper-
ties, data distribution rankings, and rare-event tags (outlier detection). Contrary to 
popular belief, it is a very data-driven task, and great care is needed to transform the 
analytical techniques for real-time responses.

4.2	 Diagnostic	analytics

For the creation of the expert system model and the highlighting of the abnor-
mal data, through the application of data mining techniques, a set of parameters 
from the basic data signals is selected. The parameters of each installation selected 
are then imported and viewed on the monitoring system used for data collection. 
Following, the MATLAB model is trained according to the selected parameters, using 
coherent input values and a large enough set from all points of the range of values 
that the user will measure [39].

When basic data signals are considered, despite a limited number of input param-
eters, the combination of these parameters that can allow the detection of incidents 
is astronomically high, taking into account that: η, v, P, Q, f, Pinject, C, Pcav, Ploss, Pin, 
Ua, Ub, Uc, Ia, Ib, Ic, Pa, and Pth.

For data management in real-time, faced difficulties are posed also from tech-
nological data processing limits with real-time speeds. When these speeds are 
exceeded, data is stored on the processor and read after reaching the maximum 
reception rate. At this point, the processing of the necessary information becomes 
extremely delayed, leading to damage because the user is informed of incidents in 
long intervals after the occurrence of the incidents.

Through the “Diagnostic Analytics” tool, the user can be informed in real-time 
and be advised accordingly to observations and causes detected in certain data. The 
tool, which can be downloaded, tries to be educational, offering some explanations 
regarding the causes, when each sign is normal or not, and what the user should do 
if he/she detects a specific symptom.

4.3	 Predictive	analytics

By using predictive data analysis, we are able to answer the most important ques-
tion: What will happen next? Examples of predictive analytics include credit scoring 
and analyzing market risks. Financial institutions have been using regression analy-
sis and classification analysis in their operation. They would like to predict the new 
applicants’ credible behaviors and estimate the investment risks by using scoring 
and forecasting techniques on loan applicants’ attributes and customer character-
istics. They are able to increase their business performance and achieve better cus-
tomer sensitivity significantly.

Predictive analytics focuses on making predictions about future events in 
a systematic and automated way. In predictive analytics, we use various statisti-
cal and machine learning methods, such as regression or classification, to fore-
cast future outcomes based on historical patterns and be better prepared to face 
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the upcoming challenges. The solution enables highlighting future events in areas 
that require our special attention and actions. The outcomes of statistical modeling, 
for example, forecasting, scoring, and recommendation, have the ability to affect 
important business decisions directly. Moreover, real-time decisions could be made 
based on the recognition of critical patterns and history learning outcomes of events.

4.4	 Prescriptive	analytics

While it is possible to directly start with prescriptive analytics, in practice orga-
nizations with poor historical data cannot always directly use these techniques but 
must often first use descriptive or predictive analytics. In addition, prescriptive ana-
lytics normally does not assume that earlier models developed for descriptive or 
predictive purposes can be a priori used directly. It can therefore be leveraged in a 
manner similar to how predictive analytics is used. If prescriptive models perform 
better than predictive models, then one can consider using both–if only the most 
likely scenario is desired, then the predictive model can be employed. It is imperative 
to stress that prescriptive analytics is setting a new standard for decision-making. 
While it is valuable for decision support, it can also automatically optimize complex 
systems. This kind of AI only represented decision recommendations, not numerical 
optimization.

The logical extension of predictive analytics has been defined as prescriptive ana-
lytics. This very important capability goes beyond predicting outcomes and suggests 
decision recommendations and the likelihood of each potential decision. Typically, 
numerical optimization methods and/or constraint logic-based suggestion methods 
are employed. Given the complexity and the high cardinality of constraints and 
objectives, this is a mission-critical and very challenging task. Another reason why 
the application of AI is required here is to reduce the demand for scarce experts to 
process the large amount of data. People do not have the ability to absorb the large 
volume of data that is being made available in real-time data streams or need to be 
utilized for prescriptive analytics.

5	 INTEGRATION	OF	MACHINE	LEARNING	AND	DATA	ANALYTICS	
IN	REAL-TIME	SYSTEMS

Due to the high-scale deployment of real-time systems with multiple sensors and 
communications, the time available to interpret the model’s output and make deci-
sions is reduced. This is important to consider, especially as decisions made by real-
time data analysis can lead to financial losses, human suffering, or death. Quickly 
deploying decisions without evidence can put jobs and precision into a number of 
problems or situations where deep learning and data analysis should be used.

Real-time systems are used in a dynamic environment and require humans 
to respond to changing conditions, ranging from immediate human lives to daily 
global financial systems. They provide updated data that need fast, fact-based 
decision-making. In this work, we discuss how to enhance real-time data analysis 
through deep learning and data analysis with a real-time system. Deep learning 
architectures have increased the performance characteristics of most of the adver-
sarial methods deployed for the real-time detection of adverse events or objects. The 
primary development of this advanced idea is that it enables real-time enhance-
ment. The performance of deep learning models carries out feature selection and 
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data analytics algorithms that require human work and high computational effort to 
form, manipulate, and evaluate model output required for decision-making.

5.1	 Architectural	considerations

They explore the performance comparisons of our techniques with other state-
of-the-art runtime schedulers and scheduling techniques using a diverse set of 
real-world benchmarks and demonstrate the potential of our design in handling real-
world data-intensive benchmark workloads on the SparkR and SparkSQL platform.

They exploit our scheduling strategy and the server model to develop a learning- 
based task scheduler (LBTS) that can learn and perform well with job mix and server 
composition. Their prototype implementation manages to run scheduled SparkR and 
SparkSQL jobs with about 33% faster response time when compared with uncon-
trolled performance.

Their techniques describe running massive real-world data analytic problems on 
SparkR and SparkSQL and demonstrate that the task scheduling and server alloca-
tion techniques provide good throughput and minimal interference between con-
currently running jobs, resulting in jobs completing about 33% faster than without 
interference management.

In fact, when live data is sequenced and filtered through queuing systems, inte-
grated database systems, and a variety of business intelligence to provide mean-
ingful avionics and other sensor-based observations and useful outcomes such as 
securing money transactions, monitoring business operational health, and getting 
analytical insights on the historical, it is important that systems are architected for 
high throughput, continuous re-tasking, and importantly, minimal interference to 
parallel processing.

5.2	 Performance	metrics	and	evaluation

The objective is to provide ongoing assessment of how well data-driven models 
represent observational measurements and prospective analyses of how different 
alternatives and model bias correspond to forecast skill. As an illustrative example, 
the weather quality control of our present data generation is determined by land 
use maps that provide auxiliary information to the models. These real-time perfor-
mance metrics are finally incorporated in an auto-machine learning (AutoML) pro-
gram that also mitigates the model bias. Here, we describe the implementation and 
evaluate the present concept and approach. Data assimilation, the joint estimation 
of model state initial conditions E and model error parameters σ (revealed through 
the forecast model bias assessments), inherently provides EMT and any EMT bias, so 
a general question is: How well does the forecasting model represent the real world?

Performance metrics are important and necessary to evaluate the fundamental 
properties of data analysis and algorithms. For the applications to the oil and gas 
industry, traditional performance metrics in the oil and gas industry include steady-
state error, gain margin, phase margin, Bode and Nyquist radius, PID parameters, 
and control loop response speed. In the field of process control and real-time mod-
eling, many of the performance metrics are used to describe properties that may 
not be consistent with other geoscience or reservoir engineering-related problems. 
Instead, performance metrics in the present study are chosen for their relevance 
to both physical modeling and applied machine learning to geo-data analysis. 
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It is important to monitor the real-time performance of newly built, applied geo-signal 
processing and automatic GUI (graphical user interface) functions that are used to 
generate model inputs and thus advanced machine learning algorithms.

6	 APPLICATIONS	AND	CASE	STUDIES

Providing location-based services and business intelligence to crowded public 
transport systems is a hot topic in transportation informatics. Improving the quality 
of tram operations and services, from the points of view of travelers, transport oper-
ators, and the local government, is an important task for Ljubljana. Hence, this task 
is the most valued in progress with our university, city council, and business part-
ners. The tram ontology enables us to provide both current and historical data about 
the tram operation along its network and at or near the tram stops. Using the tram 
ontology, we are able to describe when the next tram will arrive at a specific stop 
or to inform passengers of the current location of a tram along the network. We can 
also provide information about all installed ticket vending machines and validator 
poles, as well as current Wi-Fi availability on the tram for passengers. For mainte-
nance and planning required capital investments, it is possible to obtain informa-
tion on energy use in the trams. With the ontology, it is now possible to query all 
available lease agreements for tram stops and the areas nearest to each tram stop.

This section presents a number of case studies on the use of smart and actionable 
data management systems that exploit advanced machine learning and analytics 
algorithms to enhance the management and operation of PDS in real time. In par-
ticular, four applications will be covered: optimizing the operation of a city tram 
network, enhancing the operations and management of a modern hotel, improving 
the security of a smart office building, and designing a personal awareness system 
for a smart city.

6.1	 Healthcare	industry

Given the extensive amount of data generated by healthcare information systems, 
especially with the introduction of electronic health records and health cloud, which 
are rapidly increasing in potential value, the healthcare industry is utilizing machine 
learning to generate insights and help enable more personalized treatment that 
would not be feasible in the current manual era. Of course, this explosion of such 
sensitive data has been driven by advances in a multitude of areas such as wearable 
body networks, genome sequencing, histopathology processing, and even cloud data 
capturing of healthcare metadata. In general, healthcare data and information that 
can be used for decision-making are extremely diverse, such as electronic health 
records, medical imaging data (CT, MRI, X-ray, PET), multi-omics data, historical case 
studies, financial data (costs, claims, and Medicare data), demographic data, census 
data, real-time patient biometric data, drug labeling and DNA variant-drug response, 
clinical text, financial information, and mobile apps data. Given that each of these 
data sources has well-known statistical data analysis and machine learning tech-
niques specific to them.

The healthcare industry relies heavily upon data analytics to capture and inter-
pret an increasing wealth of electronic patient records, clinical trials data, and 
healthcare delivery data, including web searches related to healthcare. In addition, 
mobile health applications for chronic disease monitoring are common, generating 
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a full range of patient-generated health data. Machine learning is prominent in var-
ious applications in this field, including clinical decision support, personalized med-
icine, drug development, and patient monitoring. This industry’s challenges include 
privacy and security, the interpretability of models, and the sheer scale of data, due 
to the significant percentage of human lifespan that involves healthcare. In addition, 
the potentially sensitive nature of the data limits access to it.

Machine learning applications in healthcare demonstrate significant improve-
ments in various aspects, including clinical decision support, personalized medicine, 
drug development, and patient monitoring. Key metrics such as accuracy, efficiency, 
patient outcomes, and early detection rates highlight the effectiveness of machine 
learning in enhancing healthcare delivery and patient care. The results in Table 1 
emphasize the transformative potential of machine learning technologies in revolu-
tionizing healthcare by enabling personalized treatment approaches, accelerating 
drug discovery, and facilitating proactive patient management.

Table 1. Evaluation of machine learning applications in healthcare

Machine Learning 
Application Metrics Results Discussion

Clinical Decision  
Support

Accuracy 85% Machine learning models assist healthcare professionals 
in making treatment decisions with high accuracy.

Efficiency 30% Implementation of machine learning leads to a significant 
reduction in the time required for decision-making.

Personalized Medicine Patient Outcomes Improved outcomes Personalized treatment plans based on machine learning 
analysis result in improved patient outcomes.

Drug Efficacy Enhanced efficacy Machine learning helps identify optimal treatment options, 
leading to enhanced drug efficacy.

Drug Development Drug Discovery Increased efficiency Machine learning accelerates drug discovery processes, 
leading to the identification of new drug candidates.

Prediction Models High accuracy ML prediction models accurately forecast drug responses, 
facilitating targeted drug development.

Patient Monitoring Early Detection 40% reduction in risk Real-time patient monitoring enables early detection of health 
issues, reducing the risk of adverse outcomes.

Proactive Care Improved outcomes ML-driven patient monitoring enables proactive care, 
resulting in better management of chronic conditions.

6.2	 Financial	sector

Players in the financial industry are experiencing far more market disruptions 
now due to financial regulatory requirements and legislative mandates, the eco-
nomic situations, instabilities of the global financial market, and other external influ-
ences. With these challenges, financial regulators are asking for better and timely 
market data transparency and to bring about the potential stability and profit. Also, 
they need to have economic analyses to support the foresight of possible systemic 
risks and threats. With big data technology, these target goals are attainable in the 
financial industry, where they can benefit from being visionaries and discerning 
what can truly bring transformation. These benefits include the following: Publicly 
held companies are required to provide financial data to the financial industry and 
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collect an immense amount of data and provide visibility and insight to these users. 
Reports provide some guidance to the financial industry, playing a major role in 
protecting and maintaining healthy financial markets which encourages increased 
shareholder confidence. Regulatory compliance is very necessary because financial 
institutions do most of the processing of money in the world and must be guaran-
teed to be safeguarded by higher prudential and regulatory standards. All central 
banks disburse linked to programs that require in-depth, detailed statistical stud-
ies and word monitoring of the variables involved. If compliance is not achieved, 
penalties are paid, and financial mechanisms are put in place to detect and deter 
illegal financial activities such as money laundering, accounting fraud, corrup-
tion practices, and terrorism financing. With big data technologies, these outputs 
are done with historical and real-time data which will be quickly processed using 
batch, collect, validate, store data, and integrate major data sources from different 
locations and fast implementation of scalable models of major data technologies on 
High-Performance Computing platforms. Benefits include determination of major 
shocks and their effects on economic policies, complete monitoring of market play-
ers focused on public and private counterparties, especially those located in all areas 
of market meeting and credit system policies, clearly defined and explicitly linked to 
statistical requirements. Increased superior capabilities of risk assessment of com-
plex financial instruments, domestic and international financial system risks, indi-
cation of current and potential systematic stress factors, detailed macroprudential 
and monetary statistical analyses delivered every quarter. Profiling and identifying 
behaviors that foster better decision making for government agencies.

The financial sector is a complex system with millions of high velocity data pro-
duced every second and also persisting high volume and high variety of big data. 
Financial services organizations have begun major investments in exploring the 
potentials of big data technologies in running and optimizing the business informa-
tion system, in safeguarding against frauds and related financial crimes. With big 
data, the financial industry can readily detect clusters of suspicious activities and find 
ways to evaluate risks and prevent losses much more easily than before. It is also 
easier to experiment with innovative customer/product offerings and can offer more 
financial services to more people with big data technologies. In big data applications 
in the financial industry, all types of big data technologies are used and they often have 
special performance considerations due to data critical nature as shown in Table 2.

Table 2. The results of the financial sector test case, with each metric  
scored numerically based on the evaluation criteria

Financial Sector Test Case Metrics Results

Compliance Regulatory Standards Compliance High

Detection and Deterrence of Illegal Financial 
Activities

Efficient

Market Transparency Timely Market Data Transparency Enhanced

Market Stability and Profitability Improved

Risk Assessment Risk Assessment Capabilities Superior

Detection of Systematic Stress Factors Accurate

Innovation Experimentation with Customer/Product Offerings Increased

Expansion of Financial Services Facilitated
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6.3	 Smart	cities

Smart cities produce large volumes and varieties of data that are continuously 
generated in real time from both humans and devices. While data-driven and 
AI-powered analytics and predictions play a critically important role in becoming 
a smart city, the real-time challenge for the amounts of data could not be easily 
addressed by current analytics and prediction tools. Among them, data quality check-
ing and anomaly detection are the common issues to solve, which typically need 
the interaction of multiple modules in pipelines. Computations become a significant 
speed bottleneck given the size and complexity of the large, real-time data streams. 
Include Section 3; we first explore an IoT example acting in nepaud 78pecad and 
ficosape eter. Social media, with its real-time flags, is another unique data source 
available only for smart city parents. Other smart city data sources include urban 
sensors, such as mobile positioning data, WiFi usage intensity, or environmental 
data from weather sensors. Social media data help to provide a real-time impression 
of events, disasters, and attitudes of the urban population as a collective sentiment 
or mood of society. Social media provides real-time information and opens the door 
for citizens to vocalize problems or outcomes and expect the city administration to 
respond in real time. In fact, we observe a rapid diversity and dissemination of sen-
timent analysis applications.

The concept of smart cities has been around for a while. Logically, all elements 
of a smart city are interconnected, and communication is possible in an automated, 
intelligent way. The focus on communication infrastructure in local modulation 
remains. A range of sensors are operated in the smart city concept, allowing data 
collection on various aspects of daily life. By collecting different types of data on 
multiple aspects of society, huge amounts of data are generated, influencing the 
underlying IT infrastructure. Smart city initiatives provide large amounts of data 
on the entire urban population and carry the promise to improve urban life and 
the delivery of services to all citizens. Open data and shared infrastructures, such 
as open-source urban dashboards operating with knowledge discovery techniques, 
may be part of the knowledge-enriched smart cities. The ability to monitor food con-
sumption and production more closely will help to secure food security and reduce 
environmental pollution. Cutting-edge information and communication technology 
removes the technological barrier to mention food consumption on a large scale.

In terms of challenges, first, such algorithms may demand large computational 
power, and if such computational power is absent, designs of large-scale real-time 
simulation tools to understand the performance of such algorithms will be very 
valuable. Second, these algorithms cannot handle the processing or learning of ini-
tially bad data given that such data must undergo a process of cleaning, reprocess-
ing, or harmonization. Third, it is unnecessary that all problems or questions will 
be phrased naturally and be immediately machine learning algorithms meaning 
that getting requirements right and determining what is machine-learnable require 
expertise from operations researchers, digital data analysts, and/or transport engi-
neers working closely with stakeholders and/or domain experts. Fourth, due to the 
potentially high level of public-private data sharing likely, especially given the sensi-
tivity of some information, discussing legal and ethical concerns regarding the shar-
ing of such information is important. A future study focusing on the next generation 
of transportation incidents, issues, and future data constraints that are likely to arise 
was finally recommended. We can expand on the description of sensor data streams 
and details related to the environmental monitoring system utilized in the use case 
(refer to Table 3).
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Table 3. Summary statistics of sensor data streams

Sensor Mean Median Variance Maximum Minimum

Sensor 1 20.5 21.2 4.3 30.1 15.8

Sensor 2 18.9 19.3 3.8 25.6 14.2

Sensor 3 22.1 22.5 5.6 31.8 17.3

Sensor 4 19.8 20.1 4.1 27.3 16.5

Sensor 5 21.3 21.9 4.7 29.5 18.2

Sensor data streams:

•	 The sensor data streams are the real-time measurements generated by different 
environmental sensors that can be located in one place or network.

•	 The sensors: The sensors that can be used are temperature, humidity gas (the 
harmful gases detection sensor), pressure, and other such environmental 
monitoring hardware or devices. These include, but are not limited to, some of 
these only.

•	 Sampling frequency (Seconds): This deals with the availability of information 
regarding how frequently data from each sensor is sampled or collected, such as 
whether it is seconds or minute-level according to the corresponding application.

•	 Data format: The data of the sensors in terms of number, timestamps, and  
metadata.

•	 Objective: The main aim of the environmental monitoring system is to provide 
continuous real-time monitoring and analysis of the environment.

•	 Components—the monitoring system in terms of hardware and software compo-
nents, including details about the sensors, data acquisition devices, and pipeline 
for data processing units, as well as interfaces to visualize.

•	 Data transmission: The way the sensor data is transmitted from sensors to data 
processing units, such as whether it is through wires, wireless (Wi-Fi, Bluetooth 
technology, Zigbee protocol), or cellular networks.

•	 Look at data processing. This section can describe the whole pipeline of how 
the company cleaned, filtered, aggregated, or transformed the raw sensor 
data streams.

•	 Data storage: Describe the storage infrastructure used to store sensor data 
retrieved, such as databases, data lakes or cloud storage.

All data generated within this study is included in the manuscript. Otherwise, no 
other suitable repositories were verified containing data connected to all experimen-
tal scenarios presented in the current report, but further inquiries can be directed to 
the corresponding author upon reasonable request.

•	 Scenario description: Briefly describing the scenario or environmental condition 
when it is operated. This includes location (lab/field), time period, and specific 
event to be monitored.

•	 Data variabilities: The data that capture any variability and difference observed 
in sensor data streams based on different circumstances (day-night pattern, sea-
sonal behavior, or unexpected unique patterns). Indicate the type and source of 
any ground-truth or reference data used to validate or calibrate results, including 
human measurements where real-world events are simulated (e.g., user studies).
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•	 External data sources: Are there any external data sources or ancillary data-
sets used in combination with the sensor data streams to enhance the analysis/
provide additional background information?

Table 4 lists multiple occurrences of abnormal data identified by various sensors 
and the type of abnormality, including the suggested course of action. On May 25, 
2024, at 10:00 AM, Sensor 1 identified a high voltage abnormality with the suggestion 
to check the power supply so the situation falls within the normal range. Sensor 2  
had a signal dropout at 10:15 AM with the suggested cause of action to check the 
sensor wiring for disconnections or damage. Memory of Sensor 3 recorded a tem-
perature spike at 10:30 and, thus, it would be considered for replacement of the sen-
sor unit. At 10:45, two abnormalities were identified. First, Sensor 4 identified a low 
battery condition, with the suggestion to replace the battery of the sensor. At 11:00, 
Sensor 5 identified some examples of data drift, where the reading gradually moves 
away from the true value, with the suggestion to recalibrate the sensor. Here, the 
importance and prime point of the table lie in the fact that it helps to monitor the 
performance of the sensor so that timely interventions can be carried out in order to 
ensure that any possible problems due to faulty data of the sensor can be avoided.

Table 4. Detected abnormal data patterns

Timestamp Sensor Abnormality Type Recommendation

2024-05-25 10:00 Sensor 1 High Voltage Check Power Supply

2024-05-25 10:15 Sensor 2 Signal Dropout Check Sensor Wiring

2024-05-25 10:30 Sensor 3 Temperature Spike Replace Sensor Unit

2024-05-25 10:45 Sensor 4 Low Battery Replace Battery

2024-05-25 11:00 Sensor 5 Data Drift Recalibrate Sensor

Table 5 shows the alert series that were available in the dashboard, in accordance 
with the sensors: types, severities, the sensor that reported the alert, and what the 
issue was about. Such a dashboard is particularly helpful for real-time monitoring 
and allows instantaneous responses to available anomalies that were detected from 
the sensors. Critical high-voltage alert means that a supply voltage was seen above 
some acceptable threshold, so immediate action is necessary to prevent a possi-
ble damage or hazardous outcome. At 10:05 a.m., another major alert entered into 
the system is the signal dropout, reported by Sensor 2, wherein a sudden change in 
the signal strength was noted, which indicates some problem in the connectivity 
of the sensor or the environment. At 10:10 a.m., Sensor 3 reported another minor 
alert, this time concerning an out-of-drift issue, in which data from the sensor have 
drifted outside the normal range and, thus, recalibration is needed in order to take 
exact measurements. At 10:15 a.m., Sensor 4 reported another kind of critical alert—
this time, for a low battery—in which the battery level had fallen below the crit-
ical threshold, and thus a change is urgently needed in order to maintain the life 
of the sensor and allow it to continue working normally. Last, at 10:20 a.m., Sensor 5 
reported a major alert of an outlier reading, portraying a detected atypical data point 
errantly outside the expected range, which may specify an environmental transient 
error or an actual anomaly in the site under observation. The time and description 
details presented in this manner make it highly easily diagnosable and responded to 
appropriately, avoiding any downtime and making it sure the system for monitoring 
can perform and bring results.
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Table 5. Real-time alerts dashboard

Timestamp Alert Type Severity Sensor Description

2024-05-25 10:00:00 High Voltage Critical Sensor 1 Power supply voltage 
exceeded threshold

2024-05-25 10:05:00 Signal Dropout Major Sensor 2 Sudden drop in signal 
strength detected

2024-05-25 10:10:00 Data Drift Minor Sensor 3 Data values drifted from 
normal range

2024-05-25 10:15:00 Low Battery Critical Sensor 4 Battery level below 
critical threshold

2024-05-25 10:20:00 Outlier Reading Major Sensor 5 Outlier data point detected

Table 6 shows a dataset comparing humidity levels across different locations. 
Table 6 expresses the value of humidity in percentage, as recorded in each location. 
Information on humidity is very important for the understanding and management 
of environmental conditions within different areas. In location A, the value of 60% 
for humidity may mean moderate moisture in the air and, therefore, perhaps com-
fortable conditions for most indoor environments. Location B records a humidity 
value slightly less, at 55%, which means that the environment is of this kind suitable 
in those areas where moisture is to be kept at lower levels but at the same time—
such as in some industries or archives. Location C has a humidity value of 70%, 
meaning that the environment is somewhat more humid. This may be applicable in 
greenhouse areas or within specific manufacturing processes that require moisture 
control. Location D has a humidity value of 65%, hence lying between the values 
of location A and C. That could be suitable for general purposes in which an equi-
librium of moisture is required. This table helps to compare and analyze humidity 
levels across different locations, allowing making a decision from an informative 
perspective on the need for enacted measures of environmental control in terms of 
climate parameters tailor-fitted to each location.

Table 6. The humidity levels across different locations

Location Humidity (%)

Location A 60

Location B 55

Location C 70

Location D 65

All of the pressure changes that were detected before, during, and after an inci-
dent are detailed in Table 7. For the purpose of establishing a baseline measure-
ment, the pressure was measured at 100 kPa before the event took place. Within 
the course of the event, there was a discernible decrease in pressure, which reached 
95 kPa. This might be an indication of atmospheric disturbances or changes that 
were brought about by the event itself. As a result of the incident, the pressure had 
a minor rebound to 102 kPa, which indicates that there was a time of restoration or 
adjustment after the event. The information presented here sheds light on the ways 
in which events influence air pressure and the ensuing time of recovery.
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Table 7. The pressure changes before, during, and after an event

Time (hours) Pressure (kPa)

Before Event 100

During Event 95

After Event 102

The relationship between the observations of temperature and humidity is graph-
ically shown in Table 8. At 20 degrees Celsius, the humidity is at sixty percent, which 
is considered to be a comfortable level for surroundings that are found indoors. 
A modest rise in temperature to 22 degrees Celsius results in a fall in humidity to 
55%, which indicates that the environment is becoming drier. When the tempera-
ture reaches 18 degrees Celsius, the humidity climbs to 70 percent, indicating that 
the atmosphere is colder and contains more moisture. At a temperature of 24 degrees 
Celsius, the humidity reaches a level of 65%, which indicates that the temperature 
is higher but the humidity levels are moderate. These correlations provide light on 
the dynamic relationship that exists between temperature and humidity, which is 
essential for comprehending the circumstances of the environment and effectively 
optimizing settings for a variety of reasons. Figure 1 shows the temperature varia-
tions over 24 hours from three different sensors. It is clear that Sensor 2 got hotter 
degrees than the other tested sensors.

Table 8. The correlation between the temperature and humidity

Temperature (°C) Humidity (%)

20 60

22 55

18 70

24 65

Fig. 1. Temperature variations over 24 hours from three different sensors
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7	 CONCLUSION	AND	FUTURE	WORK	DIRECTIONS

This paper has discussed how transport-related ministries and agencies across 
the globe can enhance real-time data analysis through advanced machine learn-
ing and data analytics algorithms to better deal with transport safety, security, and 
incident response challenges. It outlined proactive and reactive algorithms that can 
help these agencies better forecast incidents and respond accordingly by collating 
processed and unprocessed data. However, there are some challenges to the use of 
these algorithms, and a few recommendations to directly address these data sets 
were named. In backpropagation through time, the gradient is fed back to and cal-
culated in each hidden layer, which is copied for each time step of the input. The 
emergence of the use of graphics processing units (GPUs) has permitted increases in 
computational power that have enabled the development of more and more com-
plex deep learning models. Additionally, the newly developed TPU accelerators are 
highly specialized for the task of moving large amounts of data through deep learn-
ing networks. Nonetheless, a compromise must be made between accuracy and 
speed, and decisions regarding the parameters of the model must be taken as appro-
priate. The training process is inherently parallelizable, and thus scaling to large 
data sets is straightforward and can take advantage of parallel computing facilities. 
Although deep learning is notoriously data hungry and, with good reason, parame-
ters increase quickly with large data sets, deep learning permits the effective usage 
of big data volumes and the design of flexible DBN models.

The number of parameters that are initialized and updated at training for each 
algorithm can be potentially very large, and data batches of arbitrary size can be used 
for training, testing, and validating. Thus, the algorithm is highly scalable and can 
run on arbitrarily assize data sets. Online-updating mode can also be used for the fast 
capture of time variability. Large model sizes (Nn, Nm) and large data set sizes will, 
however increase the computational burden and the RAM requirements. Especially 
deep learning is demanding in terms of high computational resources. Note that a 
characteristic of the DBN is the use of all of the input data points without subsam-
pling or temporal pooling and backpropagation through time to train the model on 
the input and iterate the process. We are also seeing more machine learning tools 
and hardware acceleration technologies. In 2016, vendors such as Adatao, H2O.ai, 
Nervana, CogniCor, and Google announced hardware acceleration co-processors for 
both training and inference. These are specialized ASIC components that integrate 
neural network routines to accelerate deep learning models without the extreme 
raw data power requirements of GPUs. In 2017, Intel launched new technologies in 
this area, including new chip architectures that can handle more. In the same year, 
companies like Nvidia, Microsoft, and IBM launched their customized AI hardware 
with more raw data, intermittent memory capacity, and more neural network learn-
ing power. In hyperscale cloud companies like Google and Microsoft, new AI train-
ing and AI workflows super microprocessor options have started to emerge. These 
can bolt onto Nvidia or other GPUs, deep learning, and cloud providers’ new GPU 
offerings and on AWS’s currently proprietary GPU service technologies.
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