
PAPER
RANDOM WALK BASED KEY NODES DISCOVERY IN OPPORTUNISTIC NETWORKS

Random Walk Based Key Nodes Discovery in
Opportunistic Networks

http://dx.doi.org/10.3991/ijoe.v12i03.5412

QIN Qin, HE Yong-qiang
Henan Institute of Engineering, Zhengzhou, China

Abstract—In opportunistic networks, temporary nodes
choose neighbor nodes to forward messages while communi-
cating. However, traditional forward mechanisms don’t take
the importance of nodes into consideration while forwarding.
In this paper, we assume that each node has a status indicat-
ing its importance, and temporary nodes choose the most
important neighbors to forward messages. While discover-
ing important neighbors, we propose a binary tree random
walk based algorithm. We analyze the iteration number and
communication cost of the proposed algorithm, and they are
much less than related works. The simulation experiments
validate the efficiency and effectiveness of the proposed
algorithm.

Index Terms—Random Walk, Key Nodes Discovery, Oppor-
tunistic Networks, forward mechanisms

I. INTRODUCTION
While communicating in opportunistic networks, it

doesn’t require a connected path between the source node
and the target node [1]. Opportunistic networks are self-
organized, the nodes in this kind of networks are mobile
devices, and communication between two nodes is im-
plemented by the opportunity that nodes come across [2].
Assuming that node a wants to send a message to node b,
because there is no connected path between them, a has to
save the message until it comes across and forwards it to
other node c; c repeats the above 'save and forward' pro-
cess; and finally, when the message is transmitted to the
target node b, the communication is finished. This kind of
opportunistic networks has been applied in many fields,
such as tracking wild animals, organizing handheld and
vehicular ad hoc networks, etc.

In opportunistic networks, while a node forwards a
message to a temporary node, it usually randomly chooses
available neighbor nodes according to some designated
mechanism [3]. Classical forwarding mechanisms include
direct transmission, location based and estimation based
forwarding mechanism. However, the common deficit of
these forwarding mechanisms is that they don’t take the
importance of nodes into consideration. Once a node
chooses some inactive or unimportant nodes to forward
message, the whole forward process has to be blocked
until these nodes become active, and this decrease the
efficiency of the whole message transmission process.

In this paper, we take the importance of nodes into con-
sideration while forwarding a message in opportunistic
networks, i.e., discovering key nodes for forwarding. We
assume that each node has a status indicating its im-
portance. In this paper, we apply PageRank, borrowed
from social networks, to present the importance of a node.
When a node chooses some neighbors to forward message,

it chooses some more important nodes or called key nodes,
and at the same time, it divides its status and sends them
to all its neighbors. Each neighbor node updates its own
status upon receiving an incoming status. We propose an
optimized binary tree random walk based algorithm for
key nodes discovery. The proposed algorithm can get the
statuses of nodes with less forward iterations and commu-
nication cost than related works.

This paper is organized as follows. In section 2, we in-
troduce some preliminaries used in this paper. Section 3
introduces related works about random walk based node
sampling in networks. Section 4 presents the proposed
binary tree random walk based algorithm. In section 5, we
give a theoretical analysis about the proposed algorithm.
Simulation experiments are given in section 6, and con-
clusion is given in section 7.

II. PRELIMINARIES

A. Undirected Graph

Assuming an undirected graph , where is
the set of nodes, and is the set of edges, we denote the
number of nodes in by , and the number of edges in
by . The adjacent matrix of is

(1)

As is undirected, the edge if and only if
, and thus the adjacent matrix is symmetric.

An undirected graph can also be represented as a di-
rected graph , where if and only
if and . So, the adjacent matrix of
the directed graph is also . We divide into two
matrixes, upper triangular matrix and lower triangular
matrix , where,

, and .

Given an adjacent matrix , the transition possibility
matrix of is

(2)

where the weights on the outgoing edges of each node
sum up to 1.

28 http://www.i-joe.org

PAPER
RANDOM WALK BASED KEY NODES DISCOVERY IN OPPORTUNISTIC NETWORKS

B. Binary Tree
A Binary Tree is a tree data structure, in which each

node has at most two child nodes, usually distinguished as
'left' and 'right'. Nodes with children are parent nodes, and
child nodes may contain references to their parents. Out-
side the tree, there is often a reference to the 'root' node
(the ancestor of all nodes). A tree, which does not have
any node other than the root node, is called a null tree. A
tree with nodes has exactly edges. The Length of
a tree is its number of nodes.

A Full Binary Tree is a tree in which every node other
than the leaves has two children. Or, perhaps more clearly,
every node in a binary tree has exactly 0 or 2 children.

In a binary tree, there is only one path from each node
to the root node, and we define the Node Depth is the
number of edges in that path. The depth of the root node is
0. We define the Binary Tree Depth is the biggest depth
for all nodes in the binary tree, that
is .

C. Personalized PageRank
The PageRank value of a node in a graph is proportion-

al to its parents' PageRank values, but inversely propor-
tional to its parents' out-degrees [4]. In a random walk or a
random surfer model, the PageRank vector is the sta-
tionary distribution, and it can be computed by the follow-
ing formula:

(3)

Personalized PageRank [5, 6] is that: In a random walk,
at each step, with a probability , usually called the tele-
port probability, jumps to the source node, and with prob-
ability follows a random outgoing edge from the
current node. Personalized PageRank is the same as Pag-
eRank, except that with a probability jumps to the source
node, for which we are personalizing the PageRank. The
Personalized PageRank vector of graph , with respect to
the source node , denoted by , satisfies:

(4)

where if and only if , and 0 otherwise.
In some applications, such as friend recommendation or

link prediction, it needs to compute all the vectors for
all , and this is the fully Personalized PageRank
computation problem. However, it only requires the top
values (and corresponding nodes) in each Personalized
PageRank vector for some suitable value of .

D. Monte Carlo Approach
There are two main approaches to compute Personal-

ized PageRank. One approach is to use linear algebraic
techniques, such as Power Iteration [4], and the other
approach is the Monte Carlo method. The Monte Carlo
method, also known as statistical simulation method,
solves problems with (pseudo) random number. The Mon-
te Carlo method of Personalized PageRank is to approxi-
mate Personalized PageRank scores by directly simulating
the corresponding random walks and then estimating the
stationary distributions with the empirical distributions of
the performed walks.

Fogaras et al. [7] and Avrachenkov et al. [8] proposed
the following Monte Carlo method for Personalized Pag-
eRank approximation: Starting at each node , do a
number of random walks (called 'fingerprints') starting

at , each having a length geometrically distributed as
. Then, the frequencies of visits to different

nodes in these fingerprints will approximate the Personal-
ized PageRank values.

III. RELATED WORKS
In opportunistic networks, forwarding mechanisms are

classified into direct transmission [9, 10], location based
[11, 12] and estimation based [13, 14] forwarding mecha-
nism, and readers can refer to reference [15] for details. In
this paper, we proposed a random walk based key node
sampling approach for message forwarding, and we main-
ly focus on the sampling efficiency and message cost of
the algorithm, so we review related works about random
walk based node sampling.

A. Monte Carlo Baseline
The Monte Carlo approach simulates random walks

from each node . Starting from , and at each step,
appends a node to the end of the fingerprint. As the prob-
ability that the random walk stops with is , the length of
the fingerprint is geometrically distributed as ,
and the expectation of length is .

The above method needs to do the random step many
times for long walks. In order to reduce the uncertainty of
the geometrical distribution, Bahmani et al. [16] propose
to use the constant length for each fingerprint. In the rest
of the paper, we call this method Monte Carlo Baseline, or
MCBL for short.

Note: Given a graph , the MCBL algorithm with pa-
rameters finishes in iterations.

B. The SQRT Algorithm
Das Sarma et al. [17] present an algorithm to efficiently

do a single random walk from a source node on the graph
in the streaming computation model. In order to construct
a random walk of length , it first does a short random
walk segment of length for each node in the graph, and
then tries to merge these short segments to form a longer
fingerprint. However, to keep the random walk truly ran-
dom, it cannot use the segment at each node more than
once. Hence, if a segment appears twice in a random walk,
it gets stuck, and then it needs to bring a number of edges
out of a properly defined set of nodes to the main memory
to continue the random walk.

Bahmani et al. [18] modify the above algorithm by the
following method: To make sure that the algorithm doesn't
get stuck when constructing a longer random walk, they
do more short random walks at each node. More precisely,
if one wants to construct a random walk of length , first-
ly, it needs to do (is the floor of) short random
walks of length , and a short random walk of length
(mod) if . While merging, each short seg-
ment cannot be used more than once, and this would make
sure that the algorithm doesn't get stuck. In the rest of the
paper, we call this algorithm the SQRT algorithm. The
SQRT algorithm is a simple modification of the algorithm
proposed by Das Sarma et al. [17], and can be easily im-
plemented on distributed systems.

The SQRT algorithm consists of two parts, segment
generation and segment merging. In the segment genera-
tion part, it needs iterations to generate the initial seg-

iJOE ‒ Volume 12, Issue 3, 2016 29

PAPER
RANDOM WALK BASED KEY NODES DISCOVERY IN OPPORTUNISTIC NETWORKS

ments, and in the segment merging part, it needs
(is the roof of) iterations to merge these segments.

Note: Given a graph , the SQRT algorithm with pa-
rameters and finishes in iterations, which
is optimal when , resulting in iterations.

C. The Doubling Algorithm
In order to reduce the number of iterations, Bahmani et

al. [18] and Csáji et al. [19] propose the Doubling algo-
rithm. Similar to the SQRT algorithm, the Doubling algo-
rithm also consists of two parts, segment generation and
segment merging, where the segment generation part is
the same as the SQRT algorithm. In the merging part, the
SQRT algorithm performs just one merge per node (per
iteration) and grows a single walk per node. In contrast to
the SQRT algorithm, the Doubling algorithm merges the
short fingerprints with dichotomy, and performs multiple
merges and grows multiple walks per node.

After the segment generation part, there are pairs of
segments of length . In the first iteration of the merging
part, the Doubling algorithm merges the pairs of seg-
ments to construct fingerprints of length ; in the
second iteration, it merges the pairs of segments to
construct fingerprints of length ; in the -th itera-
tion, it merges the pairs of segments to construct
fingerprints of length , and so on.

Note: Given a graph , the Doubling algorithm with
parameters and finishes in iterations,
which is optimal when , resulting in
iterations.

IV. BINARY TREE RANDOM WALK
The Doubling algorithm is proved to be optimal in a di-

rected graph for constructing a single random walk [18],
and the number of iterations is . However, for
undirected graphs, we can reduce the iterations a lot by
our defined binary tree random walk.

A. Binary Tree Random Walk
A Binary Tree Random Walk is the construction of a

binary tree: starting from the source node (called root
node in the binary tree), in the first iteration, chooses two
nodes from root's neighbors, one randomly chosen from
its out-links as its right child node, and another node ran-
domly chosen from its in-links as its left child node; in
each of the following iterations, for each leaf node of the
tree, chooses two nodes from its neighbors, one randomly
chosen from its out-links as its right child node, and an-
other randomly chosen from its in-links as its left child
node. Figure 1 is simple binary tree random walk started
with node 0.

0

2

4

3

61

8 2 6 3
Figure 1. A simple binary tree random walk

B. The Binary Tree Algorithm
Similar to the SQRT and Doubling algorithms, the Bi-

nary Tree algorithm has also two parts, segment genera-
tion and segment merging.

The segment generation part SegGen() is in Algo-
rithm 1. Given a graph , to construct a binary tree of
length , we need independent binary tree segments
of depth 2, where of them are independent full
binary tree segments, and another binary tree of two nodes
if . To keep the binary tree really random,
we need to make sure that the binary tree random walk
doesn't stuck, so we construct segments for each
node in the graph. Among these segments, the full
binary tree segments have both left and right children
chosen randomly from the root's neighbors, and the other
one (if it exists) has only one child as root's left child node.

Algorithm 1 SegGen()

Input: An undirected graph and the de-
sired length of binary tree random walk ;

Output: independent full binary tree segments
of depth 2 and another binary tree with only two nodes
if , rooted at each node;

1. for all do

2. for to do

3. Let ;

4. //Append two children;

5. =[;RandomNeighbor(),
RandomNeighbor()];

6. end for;

7. end for;

8. //Another binary tree if it exists

9. If then

10. =[;RandomNeighbor(),-1];

11. end if;

12. return ;

The segment merging part Binarytree() is in Algo-
rithm 2. After the segment generation part, there are
independent binary tree segments of depth 2. In the first
iteration of the merging part, it merges every
binary trees into a bigger one, and then we have
binary trees each with leaves nodes; in the second itera-
tion, it merges every binary trees, and then we

have binary trees each with leaves nodes,
and so on, until we have only one binary tree of length .

Example 1: Given a graph and , the algo-
rithm first generates binary tree of length 3,

30 http://www.i-joe.org

PAPER
RANDOM WALK BASED KEY NODES DISCOVERY IN OPPORTUNISTIC NETWORKS

and a binary tree of length 2 for each , and saves
them as files. The merging process is in figure 2. After the
generation of segments, each node has 7 segments, and
they are mutually independent. In the first iteration of the
merging part, constructs a tree of length 7 for each node.
For example, for the tree rooted at node 0, whose leaves
are and , we append two trees (rooted at and) to
it, and thus have 2 trees of length 7 and 1 tree of length 2
for each node. In the second iteration, we append the trees
rooted at and to the tree rooted at node 0, and then
we get a binary tree random walk of length 14 for node 0.

Algorithm 2 Binarytree() //segments merging

Input: An undirected graph and the de-
sired length of binary tree random walk ;

Output: One binary tree random walk of length
starting at each node in ;

1. Let =SegGen();

2. Define , and , and ,
: ,

= ;

3. for to do

4. ;

5. for to do

6. for all do

7. if then

8. ;

9. ;

10. continue;

11. end if;

12. for all do

13.
;

14. end for;

15. ;

16. end for;

17. end for;

18. ;

19. end for;

20. for all do

21. output ;

22. end for;

0

8 2

0

8 2

vi

vp vq

0

8 2

0

8 2

vj

!!!

0

8 2

0

8 2

0

vi vj

7 7 7

!!!
vr vt

0

vjvi

vqvp vtvr

30

vjvi

vqvp vtvr

3vp

! !

!! !!

3
0

vjvi

vqvp vtvr

30

vjvi

vqvp vtvr

3

!

3vq0

vjvi

vqvp vtvr

30

vjvi

vqvp vtvr

30

vjvi

vqvp vtvr

3 1

!!!
0

8 2

0

8 2

n-1 7

! !

!!! !!!

Figure 2. Construction of a binary tree random walk

V. THEORETICAL ANALYSIS
Similar to the proof of the Doubling algorithm, the bi-

nary tree random walk is also a random walk. The reason
is simply that all segments are generated randomly, and
each of the segments isn't used more than once in a binary
tree random walk.

A. The Number of Iterations
After the generation of initial segments, the Binary Tree

algorithm merges them in a few iterations, until it has one
segment per node.

Lemma 1. Given a set of binary trees, appends a
tree to if the root of is the leaf of , and thus ap-
pending all trees () to the tree

 needs 1 iteration.
Theorem 1. Given a graph , the Binary Tree algo-

rithm with parameter finishes in
merging iterations

Proof: Let be the number of binary trees after
each iteration, be the length of a binary tree, and

 be the number of leaf nodes of a binary tree.
In the segment generation part, SegGen finishes

in one iteration, after which we have independent
binary tree segments of depth 2 rooted at each node,
so , .

In the segment merging part, at the first iteration, it
merges every binary trees into a bigger one, so

,
, and

.
The second iteration merges every binary trees,

so

,
, and

.
At the th iteration, it merges every

binary trees, and then we have
,

, and
.

Above all, the problem can be transformed to following
optimization problem:

iJOE ‒ Volume 12, Issue 3, 2016 31

PAPER
RANDOM WALK BASED KEY NODES DISCOVERY IN OPPORTUNISTIC NETWORKS

 (5)

Given , we can have that
. Moreover, for ,

and thus we have . If we
want , i.e., , then it
needs that . So, the segment merging
part finishes in iterations.

From lemma 1 and theorem 1, we can have the follow-
ing corollary.

Corollary 1. Given a graph , the Binary Tree algo-
rithm with parameter finishes in
iterations.

Table 1 lists the iterations complexity. From the table
we can see that our proposed Binary Tree algorithm has
the least number of iterations in a graph.

TABLE I.
ITERATION COMPLEXITY COMPARISON

Algorithm Number of iterations
MCBL
SQRT

Doubling

Binary Tree

B. Communication Cost
In a graph with n nodes and m edges, we analyze the

communication cost of generating a random walk of
nodes.

During the generation of binary tree segments, the input
is the whole network, and the communication cost is

; each node has three random walk segments with
nodes as output, and thus the overall output for n nodes is

. So, the communication cost for the generation process
is .

During the merging process of binary tree segments, at
the -th () iteration, and for
each node, the input contains binary tree seg-
ments with nodes, and the output are

binary tree segments with nodes, so the output is
. Because the network has n nodes, the total output for each

iteration is . For iterations, the com-
munication cost of the binary tree merging process is

.
Above all, the total communication cost for the binary

tree algorithm is , and table II
gives the comparison of communication cost for related
random walk based algorithms.

TABLE II.
COMMUNICATION COST COMPARISON

Algorithm Communication cost
MCBL
SQRT

Doubling
Binary Tree

C. Approximation Node Importance with Binary Tree
Random Walk

In order to approximate the PageRank value for each
node, we use the visited frequency of each node. Given an
undirected graph , its adjacent matrix , and
its transition possibility matrix , we can have the corre-
sponding directed graph , where
if and only if and . The adjacent
matrix and transition possibility matrix of the directed
graph is also and , and the upper triangular matrix
and lower triangular matrixes of are and , re-
spectively. The transition possibility matrixes of and

 are and , respectively.
The visited frequency of a leaf node can be divided into

two parts by and . That is, we can reach the leaf
node through the last edge either in or in . If we
reach through , then the visited frequency

; and if we reach through , then
the visited frequency . In a binary tree
of length with leaves, the rank value of a node

 is divided into two parts, and , and
they are defined as follows:

 (6)

Theorem 2. Given an undirected graph ,
and a binary tree random walk of length , the
rank vector (defined as follows) is the PageRank vector.

 (7)

Proof: From equation 6 and 7, we have .
In the -th level of the binary tree , the PageRank vector
is . While in the level,

, so . That
is the PageRank definition in equation 3.

VI. SIMULATION EXPERIMENTS
In this section, we present the results of the experiments

that we have done to test the performance of our method.
As discussed by Bahmani et al. [18], the Doubling algo-
rithm is the state-of-the-art approach in the literature, and
thus we compare our proposed Binary Tree algorithm with
the Doubling algorithm. As efficiency measures, we con-
sider the clock time of the algorithms, and as quality
measure, we consider the approximation error for the top

 nodes (for suitable values of or 100).

A. Experimental Setup
In this experiment, in order to validate the overall per-

formance of the algorithms in the whole networks, we test
all nodes in a graph and observe the average iteration
number and message transmission cost. Because there are
always thousands or more nodes in a network, we imple-
ment the algorithms in Java on top of the Hadoop platform.
Our experiments are executed on a cluster of 20 nodes,
where each node is a commodity machine with a 2.16GHz

32 http://www.i-joe.org

PAPER
RANDOM WALK BASED KEY NODES DISCOVERY IN OPPORTUNISTIC NETWORKS

Intel Core 2 Duo CPU and 1GB of RAM, running CentOS
v6.0. As opportunistic network dataset are hard to acquire,
we validate the algorithms on two social network dataset,
which have similar attributes as opportunistic networks.
The two datasets are Tencent and LiveJournal [20]. Sum-
mary statistics about these datasets are presented in Table
III.

TABLE III.
SUMMARY CHARACTERISTICS OF THE DATASETS

Dataset n m

Tencent 1,944,589 50,655,143
LiveJournal 4,847,571 68,993,773

Here, n and m represent the numbers of nodes and edges of a graph,
respectively.

B. Evaluating Measures and Choosing Parameters
Efficiency Measure: To measure the efficiency of al-

gorithms, we consider the Clock Time.
Clock Time: How long, in terms of wall clock time, it

took each job to run from the beginning to the end.
Quality Measure: In friend recommendation, only the

users with highest Personalized PageRank values will be
recommended. For a node and a value , we define
to be the set of nodes with the largest Personalized Pag-
eRank values for , so only the elements in will be
returned. Real friend recommendation applications often
involve lots of factors, but personalized PageRank usually
acts as one of the most important features for these tasks.
In this paper, we aim to approximate personalized Pag-
eRank, so we take the Personalized RageRank (equation
4) as the standard. In order to measure how well we are
approximating the results in and their true numeric
values of personalized PageRank, we use:

 (8)

where is the approximate Personalized PageRank
by either the Doubling algorithm or the Binary Tree algo-
rithm.

Choosing Parameters: In our experiments, we used
the typical value as our PageRank teleport prob-
ability (in equation 4). As stated by Bahmani et al. [18],
the Doubling algorithm are not very sensitive to the choice
of , and the efficiency of the algorithm doesn't change
very much for small , so we choose constant in our
experiments for convenience.

The degree distributions of the two datasets in our ex-
periments all conform to the power law distribution. The
nodes in our graphs have widely different degrees. Most
of the nodes in the graphs have very small degrees, and
only a few nodes have very big degrees. In order to vali-
date the quality of the algorithms for different degrees, we
divide the nodes of a graph into 10 buckets, where bucket
 () contains all the nodes whose degree is in the

 interval, and bucket 10 contains all the nodes
whose degree is in . We sample 10 nodes uni-
formly at random from each bucket, use the Average
Clock Time and the Average Error of the selected 100
nodes to represent the efficiency measure and the quality
measure, respectively. The Average Error is defined as
follows:

 (9)

C. Experimental Results
The Doubling algorithm and the Binary Tree algorithm

are all approximation methods for Personalized PageRank.
We first compare the estimation quality of the two algo-
rithms, and then compare their efficiency.

Quality: We use the Personalized PageRank (equation
4), and let the typical value as our PageRank
teleport probability. As the computation of equation 4 is
the process of linear iteration, we assume the results of
100 iterations as standard values. For the quality measure,
we sample 10 nodes uniformly at random from each
bucket, let variable be 10 and 100 respectively, and
compare the Average Error (equation 9) between the Bi-
nary Tree algorithm with the Doubling algorithm. The
results, given in 3 and 4, show that the Average Errors of
the two algorithms go down while we increase the length
of the random walks in both datasets in both and

; and more importantly, our Binary Tree algo-
rithm has nearly the same quality with the Doubling algo-
rithm.

Efficiency: Firstly, we observe the change of Average
Clock Time of the two algorithms along with the increase
of the random walk length in both datasets, and the results
are in Figure 5. From the figure we can see that, both
Average Clock Times of the two algorithms increase
along with the increase of the random walk length, but our
Binary Tree algorithm increase more moderately. When
we increase the random walk length, the number of itera-
tions of the Doubling algorithm conforms to ,

(a) Tencent

(b) LiveJournal

Figure 3. VS Length

iJOE ‒ Volume 12, Issue 3, 2016 33

PAPER
RANDOM WALK BASED KEY NODES DISCOVERY IN OPPORTUNISTIC NETWORKS

(a) Tencent

(b) LiveJournal

Figure 4. VS Length

but the number of iterations of the Binary Tree algorithm
conforms to . Moreover, when we increase
the random walk length from 500 to 1000, the Binary Tree
algorithm needs one more iteration
(), but
before 500 and after 1000, the number of iterations doesn't
change, and only the computation in the iterations them-
selves increase, that is why there is a sudden rise in the
figure.

Next, we observe the Average Error VS the Average
Clock Time for or 100 in both of datasets, and the
results are in Figure 6 and 7. As it is clear from the figures,
the Binary Tree algorithm consistently performs better
than the Doubling algorithm in the Tencent dataset; while
in the LiveJournal dataset, the Binary Tree algorithm
performs better than the Doubling algorithm in most cases
except the sudden rise point.

VII. CONCLUSION
In this paper, we studied the importance of nodes while

communicating in opportunistic networks. Traditional
message forwarding mechanisms don’t consider the im-
portance of nodes while choosing neighbors to forward
messages, and will be blocked while choosing inactive
neighbors. However in this paper, we proposed a binary
tree random walk based key node sampling algorithm.
According to our algorithm, each node keeps a status
(PageRank value), and while forwarding messages, the
node can choosing active neighbors. At the same time,
each node updates their status dynamically, which makes
sure that the whole network is up-to-date. With our meth-
od, we can find key nodes in
iterations, which greatly reduces the discovery time of key
nodes. In addition, the communication cost of the pro-
posed algorithm is much less than related works.

(a) Tencent

(b) LiveJournal

Figure 5. Average Clock Time VS Length

(a) Tencent

(b) LiveJournal

Figure 6. VS Average Clock Time

34 http://www.i-joe.org

PAPER
RANDOM WALK BASED KEY NODES DISCOVERY IN OPPORTUNISTIC NETWORKS

(a) Tencent

(b) LiveJournal

Figure 7. : VS Average Clock Time

REFERENCES
[1] Boldrini C, Conti M, Jacopini J, et al. Hibop: a history based

routing protocol for opportunistic networks[C]//World of Wire-
less, Mobile and Multimedia Networks, 2007. WoWMoM 2007.
IEEE International Symposium on a. IEEE, 2007: 1-12.

[2] Pelusi L, Passarella A, Conti M. Opportunistic networking: data
forwarding in disconnected mobile ad hoc networks[J]. Communi-
cations Magazine, IEEE, 2006, 44(11): 134-141.
http://dx.doi.org/10.1109/MCOM.2006.248176

[3] Lilien L, Kamal Z H, Bhuse V, et al. Opportunistic networks: the
concept and research challenges in privacy and security[J]. Proc.
of the WSPWN, 2006: 134-147.

[4] Brin S, Page L. The anatomy of a large-scale hypertextual Web
search engine[J]. Computer networks and ISDN systems, 1998,
30(1): 107-117. http://dx.doi.org/10.1016/S0169-7552(98)00110-
X

[5] Jeh G, Widom J. Scaling personalized web search[C]//Proceedings
of the 12th international conference on World Wide Web. ACM,
2003: 271-279.

[6] Haveliwala T, Kamvar S, and Jeh G. An Analytical Comparison of
Approaches to Personalizing PageRank. Technical Report, No.
2003-35, Stanford, 2003.

[7] Fogaras D, Rácz B, Csalogány K, et al. Towards scaling fully
personalized pagerank: Algorithms, lower bounds, and experi-

ments[J]. Internet Mathematics, 2005, 2(3): 333-358.
http://dx.doi.org/10.1080/15427951.2005.10129104

[8] Avrachenkov K, Litvak N, Nemirovsky D, et al. Monte Carlo
methods in PageRank computation: When one iteration is suffi-
cient[J]. SIAM Journal on Numerical Analysis, 2007, 45(2): 890-
904. http://dx.doi.org/10.1137/050643799

[9] Spyropoulos T, Psounis K, Raghavendra C S. Single-copy routing
in intermittently connected mobile networks[C]//Sensor and Ad
Hoc Communications and Networks, 2004. IEEE SECON 2004.
IEEE Communications Society Conference on. IEEE, 2004: 235-
244.

[10] Grossglauser M, Tse D. Mobility increases the capacity of ad-hoc
wireless networks[C]//INFOCOM 2001. Twentieth Annual Joint
Conference of the IEEE Computer and Communications Societies.
Proceedings. IEEE. IEEE, 2001, 3: 1360-1369.

[11] LeBrun J, Chuah C N, Ghosal D, et al. Knowledge-based oppor-
tunistic forwarding in vehicular wireless ad hoc net-
works[C]//Vehicular technology conference, 2005. VTC 2005-
Spring. 2005 IEEE 61st. IEEE, 2005, 4: 2289-2293.

[12] Chiou B S, Lin Y J, Hsu Y C, et al. K-hop search based geograph-
ical opportunistic routing for query messages in vehicular net-
works[C]//Next-Generation Electronics (ISNE), 2013 IEEE Inter-
national Symposium on. IEEE, 2013: 279-282.

[13] Amantea G, Rivano H, Goldman A. A Delay-Tolerant Network
Routing Algorithm Based on Column Generation[C]//Network
Computing and Applications (NCA), 2013 12th IEEE Internation-
al Symposium on. IEEE, 2013: 89-96.

[14] Zhu Y, Xu B, Shi X, et al. A survey of social-based routing in
delay tolerant networks: positive and negative social effects[J].
Communications Surveys & Tutorials, IEEE, 2013, 15(1): 387-
401. http://dx.doi.org/10.1109/SURV.2012.032612.00004

[15] Huang C M, Lan K, Tsai C Z. A survey of opportunistic net-
works[C]//Advanced Information Networking and Applications-
Workshops, 2008. AINAW 2008. 22nd International Conference
on. IEEE, 2008: 1672-1677.

[16] Bahmani B, Chowdhury A, Goel A. Fast incremental and person-
alized PageRank[J]. Proceedings of the VLDB Endowment, 2010,
4(3): 173-184. http://dx.doi.org/10.14778/1929861.1929864

[17] Sarma A D, Gollapudi S, Panigrahy R. Estimating pagerank on
graph streams[J]. Journal of the ACM (JACM), 2011, 58(3): 13.
http://dx.doi.org/10.1145/1970392.1970397

[18] Bahmani B, Chakrabarti K, Xin D. Fast personalized pagerank on
mapreduce[C]//Proceedings of the 2011 ACM SIGMOD Interna-
tional Conference on Management of data. ACM, 2011: 973-984.

[19] Csáji B C, Jungers R M, Blondel V D. PageRank optimization by
edge selection[J]. Discrete Applied Mathematics, 2014, 169: 73-
87. http://dx.doi.org/10.1016/j.dam.2014.01.007

[20] Leskovec J, Lang K J, Dasgupta A, et al. Community structure in
large networks: Natural cluster sizes and the absence of large well-
defined clusters[J]. Internet Mathematics, 2009, 6(1): 29-123.
http://dx.doi.org/10.1080/15427951.2009.10129177

AUTHORS
Qin Qin is with the College of Computer, Henan Insti-

tute of Engineering, Zhengzhou, China. (e-mail: qin-
qinxuezhe@sina.com).

He Yong-qiang is with the College of Computer, He-
nan Institute of Engineering, Zhengzhou, China.

This work was supported in part by Key scientific research project of
Henan Province (15A520054), science and technology project of Henan
province(112102310550). Submitted 28 December 2015. Published as
resubmitted by the authors 20 february 2016.

iJOE ‒ Volume 12, Issue 3, 2016 35

