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Abstract—In opportunistic networks, temporary nodes 
choose neighbor nodes to forward messages while communi-
cating. However, traditional forward mechanisms don’t take 
the importance of nodes into consideration while forwarding. 
In this paper, we assume that each node has a status indicat-
ing its importance, and temporary nodes choose the most 
important neighbors to forward messages. While discover-
ing important neighbors, we propose a binary tree random 
walk based algorithm. We analyze the iteration number and 
communication cost of the proposed algorithm, and they are 
much less than related works. The simulation experiments 
validate the efficiency and effectiveness of the proposed 
algorithm. 

Index Terms—Random Walk, Key Nodes Discovery, Oppor-
tunistic Networks, forward mechanisms 

I. INTRODUCTION 
While communicating in opportunistic networks, it 

doesn’t require a connected path between the source node 
and the target node [1]. Opportunistic networks are self-
organized, the nodes in this kind of networks are mobile 
devices, and communication between two nodes is im-
plemented by the opportunity that nodes come across [2]. 
Assuming that node a wants to send a message to node b, 
because there is no connected path between them, a has to 
save the message until it comes across and forwards it to 
other node c; c repeats the above 'save and forward' pro-
cess; and finally, when the message is transmitted to the 
target node b, the communication is finished. This kind of 
opportunistic networks has been applied in many fields, 
such as tracking wild animals, organizing handheld and 
vehicular ad hoc networks, etc. 

In opportunistic networks, while a node forwards a 
message to a temporary node, it usually randomly chooses 
available neighbor nodes according to some designated 
mechanism [3]. Classical forwarding mechanisms include 
direct transmission, location based and estimation based 
forwarding mechanism. However, the common deficit of 
these forwarding mechanisms is that they don’t take the 
importance of nodes into consideration. Once a node 
chooses some inactive or unimportant nodes to forward 
message, the whole forward process has to be blocked 
until these nodes become active, and this decrease the 
efficiency of the whole message transmission process.  

In this paper, we take the importance of nodes into con-
sideration while forwarding a message in opportunistic 
networks, i.e., discovering key nodes for forwarding. We 
assume that each node has a status indicating its im-
portance. In this paper, we apply PageRank, borrowed 
from social networks, to present the importance of a node. 
When a node chooses some neighbors to forward message, 

it chooses some more important nodes or called key nodes, 
and at the same time, it divides its status and sends them 
to all its neighbors. Each neighbor node updates its own 
status upon receiving an incoming status. We propose an 
optimized binary tree random walk based algorithm for 
key nodes discovery. The proposed algorithm can get the 
statuses of nodes with less forward iterations and commu-
nication cost than related works. 

This paper is organized as follows. In section 2, we in-
troduce some preliminaries used in this paper. Section 3 
introduces related works about random walk based node 
sampling in networks. Section 4 presents the proposed 
binary tree random walk based algorithm. In section 5, we 
give a theoretical analysis about the proposed algorithm. 
Simulation experiments are given in section 6, and con-
clusion is given in section 7. 

II. PRELIMINARIES 

A.  Undirected Graph 

Assuming an undirected graph , where  is 
the set of nodes, and  is the set of edges, we denote the 
number of nodes in  by , and the number of edges in  
by . The adjacent matrix  of   is 

  
(1) 

As  is undirected, the edge  if and only if 
, and thus the adjacent matrix  is symmetric. 

An undirected graph  can also be represented as a di-
rected graph , where  if and only 
if  and . So, the adjacent matrix of 
the directed graph  is also . We divide  into two 
matrixes, upper triangular matrix  and lower triangular 
matrix , where,  

, and .  

Given an adjacent matrix , the transition possibility 
matrix  of  is 

  
(2) 

where the weights on the outgoing edges of each node 
sum up to 1. 
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B.  Binary Tree 
A Binary Tree is a tree data structure, in which each 

node has at most two child nodes, usually distinguished as 
'left' and 'right'. Nodes with children are parent nodes, and 
child nodes may contain references to their parents. Out-
side the tree, there is often a reference to the 'root' node 
(the ancestor of all nodes). A tree, which does not have 
any node other than the root node, is called a null tree. A 
tree with  nodes has exactly  edges. The Length of 
a tree is its number of nodes. 

A Full Binary Tree is a tree in which every node other 
than the leaves has two children. Or, perhaps more clearly, 
every node in a binary tree has exactly 0 or 2 children. 

In a binary tree, there is only one path from each node 
to the root node, and we define the Node Depth is the 
number of edges in that path. The depth of the root node is 
0. We define the Binary Tree Depth is the biggest depth 
for all nodes in the binary tree, that 
is . 

C.  Personalized PageRank 
The PageRank value of a node in a graph is proportion-

al to its parents' PageRank values, but inversely propor-
tional to its parents' out-degrees [4]. In a random walk or a 
random surfer model, the PageRank vector  is the sta-
tionary distribution, and it can be computed by the follow-
ing formula: 

   
(3) 

Personalized PageRank [5, 6] is that: In a random walk, 
at each step, with a probability , usually called the tele-
port probability, jumps to the source node, and with prob-
ability  follows a random outgoing edge from the 
current node. Personalized PageRank is the same as Pag-
eRank, except that with a probability  jumps to the source 
node, for which we are personalizing the PageRank. The 
Personalized PageRank vector of graph , with respect to 
the source node , denoted by , satisfies: 

  
(4) 

where  if and only if , and 0 otherwise. 
In some applications, such as friend recommendation or 

link prediction, it needs to compute all the vectors  for 
all , and this is the fully Personalized PageRank 
computation problem. However, it only requires the top  
values (and corresponding nodes) in each Personalized 
PageRank vector for some suitable value of . 

D.  Monte Carlo Approach 
There are two main approaches to compute Personal-

ized PageRank. One approach is to use linear algebraic 
techniques, such as Power Iteration [4], and the other 
approach is the Monte Carlo method. The Monte Carlo 
method, also known as statistical simulation method, 
solves problems with (pseudo) random number. The Mon-
te Carlo method of Personalized PageRank is to approxi-
mate Personalized PageRank scores by directly simulating 
the corresponding random walks and then estimating the 
stationary distributions with the empirical distributions of 
the performed walks. 

Fogaras et al. [7] and Avrachenkov et al. [8] proposed 
the following Monte Carlo method for Personalized Pag-
eRank approximation: Starting at each node , do a 
number  of random walks (called 'fingerprints') starting 

at , each having a length geometrically distributed as 
. Then, the frequencies of visits to different 

nodes in these fingerprints will approximate the Personal-
ized PageRank values. 

III. RELATED WORKS 
In opportunistic networks, forwarding mechanisms are 

classified into direct transmission [9, 10], location based 
[11, 12] and estimation based [13, 14] forwarding mecha-
nism, and readers can refer to reference [15] for details. In 
this paper, we proposed a random walk based key node 
sampling approach for message forwarding, and we main-
ly focus on the sampling efficiency and message cost of 
the algorithm, so we review related works about random 
walk based node sampling. 

A.  Monte Carlo Baseline 
The Monte Carlo approach simulates  random walks 

from each node . Starting from , and at each step, 
appends a node to the end of the fingerprint. As the prob-
ability that the random walk stops with is , the length of 
the fingerprint is geometrically distributed as , 
and the expectation of length is . 

The above method needs to do the random step many 
times for long walks. In order to reduce the uncertainty of 
the geometrical distribution, Bahmani et al. [16] propose 
to use the constant length  for each fingerprint. In the rest 
of the paper, we call this method Monte Carlo Baseline, or 
MCBL for short. 

Note: Given a graph , the MCBL algorithm with pa-
rameters  finishes in  iterations. 

B.  The SQRT Algorithm 
Das Sarma et al. [17] present an algorithm to efficiently 

do a single random walk from a source node on the graph 
in the streaming computation model. In order to construct 
a random walk of length , it first does a short random 
walk segment of length  for each node in the graph, and 
then tries to merge these short segments to form a longer 
fingerprint. However, to keep the random walk truly ran-
dom, it cannot use the segment at each node more than 
once. Hence, if a segment appears twice in a random walk, 
it gets stuck, and then it needs to bring a number of edges 
out of a properly defined set of nodes to the main memory 
to continue the random walk.  

Bahmani et al. [18] modify the above algorithm by the 
following method: To make sure that the algorithm doesn't 
get stuck when constructing a longer random walk, they 
do more short random walks at each node. More precisely, 
if one wants to construct a random walk of length , first-
ly, it needs to do  (  is the floor of ) short random 
walks of length , and a short random walk of length  
(  mod ) if . While merging, each short seg-
ment cannot be used more than once, and this would make 
sure that the algorithm doesn't get stuck. In the rest of the 
paper, we call this algorithm the SQRT algorithm. The 
SQRT algorithm is a simple modification of the algorithm 
proposed by Das Sarma et al. [17], and can be easily im-
plemented on distributed systems. 

The SQRT algorithm consists of two parts, segment 
generation and segment merging. In the segment genera-
tion part, it needs  iterations to generate the initial seg-
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ments, and in the segment merging part, it needs  
(  is the roof of ) iterations to merge these segments. 

Note: Given a graph , the SQRT algorithm with pa-
rameters  and  finishes in  iterations, which 
is optimal when , resulting in  iterations. 

C.  The Doubling Algorithm 
In order to reduce the number of iterations, Bahmani et 

al. [18] and Csáji et al. [19] propose the Doubling algo-
rithm. Similar to the SQRT algorithm, the Doubling algo-
rithm also consists of two parts, segment generation and 
segment merging, where the segment generation part is 
the same as the SQRT algorithm. In the merging part, the 
SQRT algorithm performs just one merge per node (per 
iteration) and grows a single walk per node. In contrast to 
the SQRT algorithm, the Doubling algorithm merges the 
short fingerprints with dichotomy, and performs multiple 
merges and grows multiple walks per node. 

After the segment generation part, there are  pairs of 
segments of length . In the first iteration of the merging 
part, the Doubling algorithm merges the  pairs of seg-
ments to construct  fingerprints of length ; in the 
second iteration, it merges the  pairs of segments to 
construct  fingerprints of length ; in the -th itera-
tion, it merges the  pairs of segments to construct  
fingerprints of length , and so on. 

Note: Given a graph , the Doubling algorithm with 
parameters  and  finishes in  iterations, 
which is optimal when , resulting in  
iterations. 

IV. BINARY TREE RANDOM WALK 
The Doubling algorithm is proved to be optimal in a di-

rected graph for constructing a single random walk [18], 
and the number of iterations is . However, for 
undirected graphs, we can reduce the iterations a lot by 
our defined binary tree random walk. 

A.  Binary Tree Random Walk 
A Binary Tree Random Walk is the construction of a 

binary tree: starting from the source node (called root 
node in the binary tree), in the first iteration, chooses two 
nodes from root's neighbors, one randomly chosen from 
its out-links as its right child node, and another node ran-
domly chosen from its in-links as its left child node; in 
each of the following iterations, for each leaf node of the 
tree, chooses two nodes from its neighbors, one randomly 
chosen from its out-links as its right child node, and an-
other randomly chosen from its in-links as its left child 
node. Figure 1 is simple binary tree random walk started 
with node 0. 

0

2

4

3

61

8 2 6 3  
Figure 1.  A simple binary tree random walk 

B.  The Binary Tree Algorithm 
Similar to the SQRT and Doubling algorithms, the Bi-

nary Tree algorithm has also two parts, segment genera-
tion and segment merging. 

The segment generation part SegGen( ) is in Algo-
rithm 1. Given a graph , to construct a binary tree of 
length , we need  independent binary tree segments 
of depth 2, where  of them are independent full 
binary tree segments, and another binary tree of two nodes 
if . To keep the binary tree really random, 
we need to make sure that the binary tree random walk 
doesn't stuck, so we construct  segments for each 
node in the graph. Among these segments, the  full 
binary tree segments have both left and right children 
chosen randomly from the root's neighbors, and the other 
one (if it exists) has only one child as root's left child node. 
 

Algorithm 1 SegGen( ) 

Input: An undirected graph  and the de-
sired length of binary tree random walk ; 

Output:  independent full binary tree segments 
of depth 2 and another binary tree with only two nodes 
if , rooted at each node; 

1. for all  do 

2.   for  to  do 

3.     Let ; 

4.     //Append two children; 

5.     =[ ;RandomNeighbor( ),  
RandomNeighbor( )]; 

6.   end for; 

7. end for; 

8. //Another binary tree if it exists 

9. If  then 

10.   =[ ;RandomNeighbor( ),-1]; 

11. end if; 

12. return ; 
 

The segment merging part Binarytree( ) is in Algo-
rithm 2. After the segment generation part, there are  
independent binary tree segments of depth 2. In the first 
iteration of the merging part, it merges every  
binary trees into a bigger one, and then we have  
binary trees each with  leaves nodes; in the second itera-
tion, it merges every  binary trees, and then we 

have  binary trees each with  leaves nodes, 
and so on, until we have only one binary tree of length . 

Example 1: Given a graph  and , the algo-
rithm first generates  binary tree of length 3, 
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and a binary tree of length 2 for each , and saves 
them as files. The merging process is in figure 2. After the 
generation of segments, each node has 7 segments, and 
they are mutually independent. In the first iteration of the 
merging part, constructs a tree of length 7 for each node. 
For example, for the tree rooted at node 0, whose leaves 
are  and , we append two trees (rooted at  and ) to 
it, and thus have 2 trees of length 7 and 1 tree of length 2 
for each node. In the second iteration, we append the trees 
rooted at  and  to the tree rooted at node 0, and then 
we get a binary tree random walk of length 14 for node 0. 

 

Algorithm 2 Binarytree( ) //segments merging 

Input: An undirected graph  and the de-
sired length of binary tree random walk ; 

Output: One binary tree random walk of length  
starting at each node in ; 

1. Let =SegGen( ); 

2. Define , and , and , 
:  , 

= ; 

3. for  to  do 

4.   ; 

5.   for  to  do 

6.     for all  do 

7.       if  then 

8.         ; 

9.         ; 

10.         continue; 

11. end if; 

12.       for all  do 

13.           
; 

14.       end for; 

15.       ; 

16. end for; 

17.   end for; 

18.   ; 

19. end for; 

20. for all  do 

21.   output ; 

22. end for; 
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Figure 2. Construction of a binary tree random walk

V. THEORETICAL ANALYSIS 
Similar to the proof of the Doubling algorithm, the bi-

nary tree random walk is also a random walk. The reason 
is simply that all segments are generated randomly, and 
each of the segments isn't used more than once in a binary 
tree random walk. 

A. The Number of Iterations 
After the generation of initial segments, the Binary Tree 

algorithm merges them in a few iterations, until it has one 
segment per node. 

Lemma 1. Given a set  of binary trees, appends a 
tree  to  if the root of  is the leaf of , and thus ap-
pending all trees ( ) to the tree 

 needs 1 iteration. 
Theorem 1. Given a graph , the Binary Tree algo-

rithm with parameter  finishes in  
merging iterations 

Proof: Let  be the number of binary trees after 
each iteration,  be the length of a binary tree, and 

 be the number of leaf nodes of a binary tree. 
In the segment generation part, SegGen  finishes 

in one iteration, after which we have  independent 
binary tree segments of depth 2 rooted at each node, 
so , . 

In the segment merging part, at the first iteration, it 
merges every  binary trees into a bigger one, so 

, 
, and  

. 
The second iteration merges every  binary trees, 

so 

, 
, and  

. 
At the th iteration, it merges every  

binary trees, and then we have 
, 

, and  
. 

Above all, the problem can be transformed to following 
optimization problem: 
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 (5) 

Given , we can have that 
. Moreover, for , 

and thus we have . If we 
want , i.e., , then it 
needs that . So, the segment merging 
part finishes in  iterations.  

From lemma 1 and theorem 1, we can have the follow-
ing corollary. 

Corollary 1. Given a graph , the Binary Tree algo-
rithm with parameter  finishes in  
iterations. 

Table 1 lists the iterations complexity. From the table 
we can see that our proposed Binary Tree algorithm has 
the least number of iterations in a graph. 

TABLE I.   
ITERATION COMPLEXITY COMPARISON 

Algorithm Number of iterations 
MCBL  
SQRT  

Doubling  

Binary Tree  

B.  Communication Cost 
In a graph with n nodes and m edges, we analyze the 

communication cost of generating a random walk of  
nodes. 

During the generation of binary tree segments, the input 
is the whole network, and the communication cost is 

; each node has three random walk segments with  
nodes as output, and thus the overall output for n nodes is 

.  So, the communication cost for the generation process 
is . 

During the merging process of binary tree segments, at 
the -th ( ) iteration, and for 
each node, the input contains  binary tree seg-
ments with  nodes, and the output are  

binary tree segments with  nodes, so the output is 
. Because the network has n nodes, the total output for each 

iteration is . For  iterations, the com-
munication cost of the binary tree merging process is 

. 
Above all, the total communication cost for the binary 

tree algorithm is , and table II 
gives the comparison of communication cost for related 
random walk based algorithms. 

TABLE II.   
COMMUNICATION COST COMPARISON 

Algorithm Communication cost 
MCBL  
SQRT  

Doubling  
Binary Tree  

C.  Approximation Node Importance with Binary Tree 
Random Walk 

In order to approximate the PageRank value for each 
node, we use the visited frequency of each node. Given an 
undirected graph , its adjacent matrix , and 
its transition possibility matrix , we can have the corre-
sponding directed graph , where  
if and only if  and . The adjacent 
matrix and transition possibility matrix of the directed 
graph  is also  and , and the upper triangular matrix 
and lower triangular matrixes of  are  and , re-
spectively. The transition possibility matrixes of  and 

 are  and , respectively. 
The visited frequency of a leaf node can be divided into 

two parts by  and . That is, we can reach the leaf 
node  through the last edge either in  or in . If we 
reach  through , then the visited frequency 

; and if we reach  through , then 
the visited frequency . In a binary tree 
of length  with  leaves, the rank value of a node 

 is divided into two parts,  and , and 
they are defined as follows: 

  
 (6) 

Theorem 2. Given an undirected graph , 
and a binary tree random walk  of length , the 
rank vector  (defined as follows) is the PageRank vector. 

  
 (7) 

Proof: From equation 6 and 7, we have . 
In the -th level of the binary tree , the PageRank vector 
is . While in the  level, 

, so  . That 
is the PageRank definition in equation 3.  

VI. SIMULATION EXPERIMENTS 
In this section, we present the results of the experiments 

that we have done to test the performance of our method. 
As discussed by Bahmani et al. [18], the Doubling algo-
rithm is the state-of-the-art approach in the literature, and 
thus we compare our proposed Binary Tree algorithm with 
the Doubling algorithm. As efficiency measures, we con-
sider the clock time of the algorithms, and as quality 
measure, we consider the approximation error for the top 

 nodes (for suitable values of  or 100). 

A.  Experimental Setup 
In this experiment, in order to validate the overall per-

formance of the algorithms in the whole networks, we test 
all nodes in a graph and observe the average iteration 
number and message transmission cost. Because there are 
always thousands or more nodes in a network, we imple-
ment the algorithms in Java on top of the Hadoop platform. 
Our experiments are executed on a cluster of 20 nodes, 
where each node is a commodity machine with a 2.16GHz 
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Intel Core 2 Duo CPU and 1GB of RAM, running CentOS 
v6.0. As opportunistic network dataset are hard to acquire, 
we validate the algorithms on two social network dataset, 
which have similar attributes as opportunistic networks. 
The two datasets are Tencent and LiveJournal [20]. Sum-
mary statistics about these datasets are presented in Table 
III. 

TABLE III.   
SUMMARY CHARACTERISTICS OF THE DATASETS 

Dataset n m 

Tencent 1,944,589 50,655,143 
LiveJournal 4,847,571 68,993,773 

Here, n and m represent the numbers of nodes and edges of a graph, 
respectively. 

B.  Evaluating Measures and Choosing Parameters 
Efficiency Measure: To measure the efficiency of al-

gorithms, we consider the Clock Time. 
Clock Time: How long, in terms of wall clock time, it 

took each job to run from the beginning to the end. 
Quality Measure: In friend recommendation, only the 

users with highest Personalized PageRank values will be 
recommended. For a node  and a value , we define  
to be the set of nodes with the  largest Personalized Pag-
eRank values for , so only the elements in  will be 
returned. Real friend recommendation applications often 
involve lots of factors, but personalized PageRank usually 
acts as one of the most important features for these tasks. 
In this paper, we aim to approximate personalized Pag-
eRank, so we take the Personalized RageRank (equation 
4) as the standard. In order to measure how well we are 
approximating the results in  and their true numeric 
values of personalized PageRank, we use: 

  
 (8) 

where  is the approximate Personalized PageRank 
by either the Doubling algorithm or the Binary Tree algo-
rithm. 

Choosing Parameters: In our experiments, we used 
the typical value  as our PageRank teleport prob-
ability (in equation 4). As stated by Bahmani et al. [18], 
the Doubling algorithm are not very sensitive to the choice 
of , and the efficiency of the algorithm doesn't change 
very much for small , so we choose constant  in our 
experiments for convenience. 

The degree distributions of the two datasets in our ex-
periments all conform to the power law distribution. The 
nodes in our graphs have widely different degrees. Most 
of the nodes in the graphs have very small degrees, and 
only a few nodes have very big degrees. In order to vali-
date the quality of the algorithms for different degrees, we 
divide the nodes of a graph into 10 buckets, where bucket 
 ( ) contains all the nodes whose degree is in the 

 interval, and bucket 10 contains all the nodes 
whose degree is in . We sample 10 nodes uni-
formly at random from each bucket, use the Average 
Clock Time and the Average Error of the selected 100 
nodes to represent the efficiency measure and the quality 
measure, respectively. The Average Error is defined as 
follows: 

  
 (9) 

C.  Experimental Results 
The Doubling algorithm and the Binary Tree algorithm 

are all approximation methods for Personalized PageRank. 
We first compare the estimation quality of the two algo-
rithms, and then compare their efficiency. 

Quality: We use the Personalized PageRank (equation 
4), and let the typical value  as our PageRank 
teleport probability. As the computation of equation 4 is 
the process of linear iteration, we assume the results of 
100 iterations as standard values. For the quality measure, 
we sample 10 nodes uniformly at random from each 
bucket, let variable  be 10 and 100 respectively, and 
compare the Average Error (equation 9) between the Bi-
nary Tree algorithm with the Doubling algorithm. The 
results, given in 3 and 4, show that the Average Errors of 
the two algorithms go down while we increase the length 
of the random walks in both datasets in both  and 

; and more importantly, our Binary Tree algo-
rithm has nearly the same quality with the Doubling algo-
rithm. 

Efficiency: Firstly, we observe the change of Average 
Clock Time of the two algorithms along with the increase 
of the random walk length in both datasets, and the results 
are in Figure 5. From the figure we can see that, both 
Average Clock Times of the two algorithms increase 
along with the increase of the random walk length, but our 
Binary Tree algorithm increase more moderately. When 
we increase the random walk length, the number of itera-
tions  of  the Doubling  algorithm  conforms  to , 

 
(a) Tencent 

 
(b) LiveJournal 

Figure 3.   VS Length 
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(a) Tencent 

 
(b) LiveJournal 

Figure 4.   VS Length 

but the number of iterations of the Binary Tree algorithm 
conforms to . Moreover, when we increase 
the random walk length from 500 to 1000, the Binary Tree 
algorithm needs one more iteration 
( ), but 
before 500 and after 1000, the number of iterations doesn't 
change, and only the computation in the iterations them-
selves increase, that is why there is a sudden rise in the 
figure. 

Next, we observe the Average Error VS the Average 
Clock Time for  or 100 in both of datasets, and the 
results are in Figure 6 and 7. As it is clear from the figures, 
the Binary Tree algorithm consistently performs better 
than the Doubling algorithm in the Tencent dataset; while 
in the LiveJournal dataset, the Binary Tree algorithm 
performs better than the Doubling algorithm in most cases 
except the sudden rise point. 

VII. CONCLUSION 
In this paper, we studied the importance of nodes while 

communicating in opportunistic networks. Traditional 
message forwarding mechanisms don’t consider the im-
portance of nodes while choosing neighbors to forward 
messages, and will be blocked while choosing inactive 
neighbors. However in this paper, we proposed a binary 
tree random walk based key node sampling algorithm. 
According to our algorithm, each node keeps a status 
(PageRank value), and while forwarding messages, the 
node can choosing active neighbors. At the same time, 
each node updates their status dynamically, which makes 
sure that the whole network is up-to-date. With our meth-
od, we can find key nodes in  
iterations, which greatly reduces the discovery time of key 
nodes. In addition, the communication cost of the pro-
posed algorithm is much less than related works. 

 
(a) Tencent 

 
(b) LiveJournal 

Figure 5.  Average Clock Time VS Length 

 
(a) Tencent 

 
(b) LiveJournal 

Figure 6.   VS Average Clock Time 
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(a) Tencent 

 
(b) LiveJournal 

Figure 7.  :  VS Average Clock Time 
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