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Abstract—to identify the hang, collision and drift faults of 
methane sensors, this paper presents a fault diagnosis meth-
od for methane sensors using multi-sensor information 
fusion. A methane concentration monitoring approximation 
model with multi-sensor information fusion is established 
based on generalized regression neural network (GRNN). 
The output of the neural network is compared with the 
measured value of the sensor to be diagnosed to obtain the 
variation curve of the residual error signal. Through the 
analysis of the variation tendency of the residual error sig-
nal, the fault status of a methane sensor could be deter-
mined based on a reasonable threshold. Through simulation 
comparison is applied between the two models of GRNN 
and BP neural network; verify the GRNN model is much 
more precise in the approximation of methane concentra-
tions. Fault diagnosis for methane sensors using generalized 
regression neural network is effective and more efficient. 

Index Terms—generalized regression neural network 
(GRNN), methane sensor, fault diagnosis, multi-sensor 
information fusion 

I. INTRODUCTION 
Methane sensors are important detectors of methane 

concentrations under coal mine shafts. The performance 
of these sensors directly influences the safety of coal 
mines. The high levels of humidity and dust in under-
ground coal mines frequently cause methane sensor faults, 
such as hang, collision, and drift faults. The prompt 
recognition of methane sensor faults is significant ap-
proach to ensure safety in coal mines. Therefore, studying 
methods for detecting methane sensor faults is crucial [1-
2].  

Artificial neural networks with self-learning ability, 
strong fault tolerance and excellent capability of parallel 
processing of information have been successfully used to 
diagnose and estimate faults in various fields. Khorasani 
et al. proposed a fault diagnosis and separation program 
based on a neural network. This program was designed for 
manual injection engine faults with high dynamic nonline-
arity and was found to exhibit good fault diagnosis per-
formance [3-4]. To diagnose flameout faults in diesel 
engines, Liu et al. [5] suggested to reduce the dimension 
of effective vibration signals with rough set and then es-
tablished a back propagation (BP) neural network model 
to identify vibration signal patterns. Shao et al. [6] pro-
posed a fault diagnosis method based on a global neural 
network to improve the stability and reliability of a proton 
exchange membrane fuel cell system. Their experimental 
result revealed that this method was superior to others in 

terms of fault diagnosis efficiency and generalizing abil-
ity. Rostek et al. [7] used a neural network to achieve an 
early detection and estimation of leakage faults in a fluid 
bed boiler. Their experimental result demonstrated that the 
neural network detected leakage faults effectively, and 
thus improving the fault classification system was possi-
ble. Zhu et al. and Xue et al. [8, 9] presented a fault pre-
diction algorithm based on time-series using improved 
reservoir neural networks. B. Wang et al. developed a 
prediction and evaluation program that integrated a me-
thane detector, neural network and methane diffusion 
model and was different from the real-time prediction and 
evaluation system of harmful methane diffusion. Their 
experimental verification revealed the high reliability of 
this system and its high correlation with the original eval-
uation model [10-13]. Zhang et al. [14] came up with a 
solution that combines artificial neural networks with fault 
tree analysis to improve the prediction of underground 
coal and methane outbursts. This solution provided effec-
tive references for predicting potential coal and methane 
outburst risks. In a study aimed at diagnosing faults in 
coal mines, Zhu et al. [15] established a chain wireless 
sensor network as a methane monitoring assistant with 
consideration of the geographic features of mine tunnels. 
Following the result of their analysis of the fault modes of 
methane sensors in coal mines, they proposed a methane 
sensor fault diagnosis technology based on chain wireless 
sensor networks. Complicated factors influence methane 
concentrations in coal mines. Hence, information fusion-
based neural networks have become one of the main de-
velopment directions of methane sensor fault diagnosis. 

In the coal mine, the methane sensor worked in dreadful 
conditions, such as, obvious temperature fluctuations, high 
humidity, severe dust and strong electromagnetic interfer-
ence. The close coupling between methane sensor and 
environment are determined by its structure and working 
principle. So, its output of monitoring data is mostly not 
dependent on historical data. Therefore, the fault diagnosis 
study in methane sensors isn’t applied with fault diagnosis 
method which based on the time series. The traditional 
neural network has some problems such as slow conver-
gence, network layers, no theoretical guidance on the 
choice of cell number and poor stability. By increasing the 
number of wireless sensors to build chain wireless sensor 
network, it can effectively improve the accuracy of fault 
diagnosis. But the cost of monitoring system will be in-
creased greatly. In this paper, based on GRNN network, 
the data fusion technology of fault diagnosis is proposed. 
Assuming that each monitoring system has the same lay-
out of sensor, the data fusion technology of fault diagnosis 
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can improve the convergence speed and stability of moni-
toring data by optimizing diagnosis prediction network 
and carrying out cross validation. Therefore, this technol-
ogy has obvious advantages to improve the diagnosis 
accuracy without adding any sensor.  

In the present study, a Generalized Regression Neural 
Network (GRNN) was employed for the high-accuracy 
approximation and estimation of methane concentrations. 
An estimation model based on a BP neural network was 
also established. Compared with the estimation model 
based on a BP neural network, the GRNN model had 
certain advantages in the construction of methane concen-
tration approximation. Finally, we obtained a residual 
error between the estimated methane concentration of the 
GRNN model and the tested methane concentration. This 
error could reflect the working conditions of methane 
sensors on the basis of a reasonable threshold. As a result, 
methane sensor faults could be diagnosed. 

II. FAULT DIAGNOSIS METHODS OF METHANE 
SENSOR 

A. BP neural networks 
BP neural network is widely applied in multiple sensor 

data fusion fault diagnosis. It is generally composed of an 
input layer, a hidden layer, and an output layer. The hid-
den layer can be one or more layers, and no node coupling 
exists in the same layer. 

In a BP neural network, the input signal travels from the 
nodes of the input layer to the nodes of the hidden layer(s) 
and then to the nodes of the output layer. Such forward 
signal propagation is a layer-based updating process. The 
output status of the neuron nodes in the current layer is 
only influenced by the status of the neuron nodes in the 
previous layer. In back error propagation, a large error in 
the output layer may exist because the expected output 
node could not be acquired. Therefore, the weight and 
threshold of the neural network should be adjusted contin-
uously through back error propagation until the output 
node of the output layer is approximate to the expected 
one. The objective of the learning process of the BP neural 
network is to train the network with training samples and 
to repeat both back error propagation and forward signal 
propagation. The weight of the BP neural network during 
back error propagation is adjusted according to delta 
learning rules. The inputs and outputs of the input layer, 
hidden layer(s) and output layer during forward signal 
propagation are calculated as follows: 

i ij j j
j

w w x != +"
   

 ( )iy f w=                               (1)        
Where wi is the activation value of the ith node in one 

layer j! , is the threshold, xj is the input signal. wij is the 
connection weight between the ith and jth nodes, and yi is 
the output value of the ith node in one layer. 

Back error propagation adjusts the weight and threshold 
according to error between the expected output and the 
actual output. The weight adjustment formula is shown in 
the following: 
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Where E is the neural network error between the ex-
pected output and the actual output, and ! is the learning 
rate. The recognition or estimation result of a BP neural 
network is evaluated by using test samples once it meets 
the requirements after training.  

B. Generalized Regression Neural Network  
The GRNN was proposed by an American scholar in 

1991, and it was developed from the Radial Basis Func-
tion (RBF) neural network. With strong nonlinear map-
ping and fitting capability, as well as high robustness, the 
GRNN can approximate hidden function relationships 
according to sample data. The GRNN has a simple struc-
ture and easy parameter adjustment during network train-
ing. The GRNN is superior to other neural networks in 
terms of approximation capability and learning speed. 
Moreover, it can overcome long convergence time and 
local minimum problems during prediction. It finally 
converges at the optimized regression surface with main-
taining good prediction effect under the condition of small 
sample. As a result, the GRNN has been widely used in 
various industries, including finance control decision 
systems, bioengineering, and food science. The basic 
structure of the GRNN is shown in Figure 1. 

 
Figure 1.  Structure of the GRNN 

The GRNN consists of four layers namely: input layer, 
pattern layer, summation layer and output layer. Similar to 
the input layers of other neural layers, the input layer of 
the GRNN transmits input variables directly to the mode 
layer. The number of neurons in the input layer is equiva-
lent to the dimension of the input vector in the forecast 
samples. 

The number of neurons in the mode layer is equal to 
that in the input layer. Different samples correspond to 
different neurons. The neuron response function of the 
mode layer is: 
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Where the output of neuron i is the exponential square 
of the Euclid distance square between the input variable 
and the corresponding sample, Pi is the output of neurons 
in the node layer, 2 ( ) ( )T

i i iD X X X X= ! ! , X is the input 
variable of the neural network, Xi is the learning sample 
corresponding to the ith neuron in the node layer; and! is 
called the smoothing factor. Neuron summation in the 
summation layer can be divided into two types; 

One neuron summation type is: 
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The weight between the neurons of the node layer and 
those of the summation layer Are all 1. All the outputs of 
the node layer are added. The summation transfer function 

is:
1
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Another neuron summation type is: 
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That performs a weighted summation of the outputs of 
the node layer. In formula (5), the jth element in   (the ith 
output sample) is the connected weight of the sum be-
tween the ith neuron in the node layer and the jth neuron 
in the summation layer. The summation transfer function 
is: 

   
1

1,2,
n

Nj ij i
i

S y P j k
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The number of neurons in the output layer is equal to 
the final expected number of network tracking targets, that 
is, the output target vector dimensions in the forecast 
sample (k). The output of neuron j in the output layer 
corresponds to the jth element in the following estimation 
( ˆ( )Y x ): 
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C. Cross-Validation method  
Cross Validation (CV) evaluates the performance of a 

classifier by dividing the original data samples into train-
ing and validation sets. The training set is used to train and 
construct the classifier, whereas the validation set is used 
to verify the trained classifier model, which evaluates the 
performance of the classifier. CV is a statistical analysis 
method. Common CV methods include the hold-out 
method, K-fold CV (K-CV) and leave-one-out CV. In the 
present study, the K-CV method is applied. The original 
sample data are divided into K groups. Every group of 
data is viewed as one validation set and the remaining K-1 
groups of data are used as a training set. After the circle 
training of the K combinations and the classifier verifica-
tion, the mean classification accuracy under K validation 
sets is calculated as the final performance index of the 
classifier. Generally, K is valued at least 2. The K-CV 
method can avoid over-learning and under-learning and 
the classifier result is persuasive to a certain extent. 

D. Methane sensor fault diagnosis model 
The distribution of methane sensors on the coal face is 

shown in Figure 2. Figure 2 shows that temperature, CO, 
wind speed and volume as well as the methane concentra-
tions at T0 and T2 are closely related to the measured value 
of T1. The measured values of the corresponding sensors 
are used as the historical data sample for the offline train-
ing of the data fusion approximation. The approximation 
model of T1 is established after it meets the preset training 
requirement. On the basis of this model, the data fusion 
approximation is constructed. 

The methane sensor fault diagnosis model based on the 
GRNN approximation is shown in Figure 3. Based on the 
trained GRNN approximation, methane concentration (Y)  

 
Figure 2.  Methane sensor distribution on the coal face  
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Figure 3.  Methane sensor fault diagnosis model based on the GRNN 

approximation  

is estimated by inputting temperature, CO, wind speed and 
the measured values of T0 and T2 into the neural network. 

Y is used as the estimated value of T1 is compared with 
the measured value (y) of T1 to obtain the variation curve 
of the residual error signal, so that a fault in the methane 
sensor could be determined. If a small residual error be-
tween Y and y exists, then T1 is operating normally. When 
the residual error between Y and y changes larger, the 
measured value (y) of the sensor (T1) to be diagnosed 
cannot correctly determine the methane concentrations at 
the monitoring points, thereby T1 is operating in fault 
state. 

An appropriate fault diagnosis strategy for methane 
sensors allows the effective and timely detection of faults. 
The diagnosis strategy is as follows: the residual error of 
the methane sensor under normal operation conditions is 
consistent with white Gaussian noise characteristics, but it 
changes abnormally at faults. The waveform of the residu-
al error will change significantly. Therefore, threshold can 
be set.  |y-Y|!!, a methane sensor fault exists. However, a 
false alarm is sent if !  is significantly small and a leakage 
alarm is raised if !  is extremely high. This threshold is 
tested in practical engineering and finally determined to be 
0.78. 

III. VERIFICATION METHOD OF FAULT DIAGNOSIS FOR 
METHANE SENSORS 

A. Site distribution of methane sensors 
Safety monitoring systems in coal mines perform real-

time methane concentration detections in the coal produc-
tion environment through methane sensors (Right 1 in 
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Figure 4) and send the results to the monitoring center in 
real time (Figure 5). Through this process, the technical 
personnel can identify an accident risk according to cur-
rent safety production conditions or field data statistics. 
The technical personnel can then adopt corresponding 
safety measures and avoid potential accidents. The ground 
data center can conduct dense monitoring at multiple 
points simultaneously. The minimum real-time data stor-
age interval is 1 s. The intelligent KG9701 low-
concentration methane sensor is used. Its main technical 
indicators are as follow: methane concentration measure-
ment of 0%�4%, methane concentration measurement 
accuracy of ±0.10%�±0.30%, and signal output type 
represent as a frequency. The coal mine safety monitoring 
system is shown in Figure 6.  

The methane sensor value at the test point (T1) is related 
to the temperature, CO, wind speed and volume and 
measured values of the surrounding methane sensors (T0, 
T2). Related parameters could be integrated by establish-
ing a methane concentration approximation based on data 
fusion. Such integration leads to highly accurate estima-
tions of methane concentrations.   

B. Training data and test data of GRNN acquisition 
The input layer of the GRNN features five neurons, 

namely, wind speed, temperature, CO content, and the 
measured values of T0 and T2 near the monitoring points. 
Only one neuron exists in the output layer, that is, the 
approximation value of T1 at the monitoring points. A total 
of 110 groups of on-site data are collected successively 
from the coal mine safety monitoring system as shown in 
the Figure 7. Each group of data includes wind speed, 
temperature, CO, and the measured values of T0, T2 and T1. 
The five neurons in the input layer fluctuate in terms of 
order of magnitude. 

To ensure the training effect of the neural network, the 
neurons are normalized first. Later, 110 groups of data are 
divided into two groups. The first 70 groups of data are 
used as the training data of the GRNN and the remaining 
40 groups are used as the test data of the GRNN.     

 
 

 
Figure 4.  Site installation of methane sensors  

 
Figure 5.  Monitoring platform at data center  
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Figure 6.  Safety monitoring system in coal mine  
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Figure 7.  On-site data collection 
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C. The comparison of approximation capability between 
the GRNN-based approximation and BP-based 
approximation 

Reasonably choosing the spread of the RBF in the 
GRNN is important. A minimal spread equates to the 
strong approximation capability of the GRNN. When the 
spread is high, the output curve of the GRNN exhibits 
good smoothness. However, the GRNN may reveal larger 
errors compared with the GRNN with minimal spread. To 
derive the best spread, the 70 groups of training data are 
divided into five groups with the K-CV method. One 
group is used as the test set, and the remaining four groups 
are used to train the GRNN. In this process, five cycle 
tests are performed. During each cycle test, from 0.1 to 2, 
the spread is substituted into the GRNN at a step length of 
0.1 to test the network performance. Subsequently, the 
best spread can be gained to be 0.2. 

The test data are applied on the trained GRNN. Figure 5 
shows the mean square error (MSE) of the corresponding 
output of the GRNN under the best spread to be 2.8737e-
04. The estimation is gained on the basis of 40 groups of 
test data. The estimations of a GRNN-based approxima-
tion and a BP-based approximation under the same test 
data and spread are compared (Figure 8). The output dif-
ference between the GRNN-based approximation and BP-
based approximation under the same test data is shown in 
Figure 9. 

An output difference exists between the GRNN and BP-
based approximations under the same test data. As shown 
in Figure 6, the error of the GRNN-based approximation 
is limited within the range of [0, 0.15], whereas that of the 
BP-based approximation is limited within the range of [0, 
0.25]. The error range of the GRNN is smaller than the BP 
neural network. Furthermore, the BP neural network mod-
el has to initialize a weight and threshold when it is used 
for sample forecast. It also features poor stability because 
of certain randomness, long convergence time and local 
minimum problems. On the contrary, the GRNN has a 
simple structure and involves few parameters for adjust-
ment. It features fast estimation and good approximation 
capability in the selection of a correct spread. 
D. Results of methane sensor fault diagnosis 

In this paper, the simulation experiments were per-
formed with four typical faults of methane sensor, [16] 
such as: collision, hang, drift and periodic fault. The colli-
sion fault was happening at the 32 sample, the hang fault 
was happening at the 30 sample, the drift fault was hap-
pening at the 32 sample, and the periodic fault was hap-
pening at the 17 and the 35 sample. The residual signal 
change curve was shown in Figure 10-13.  

Figure 10-13 has shown that in comparing the estima-
tion value Y and the measured value y, the variation curves 
of the residual error ( ! ) can be obtained if T1 correspond-
ingly acts once with collision, hang, drifting and periodic 
faults. When T1 performs with the aforementioned faults, 
the residual error (! ) obtained in the comparison of Y and 
measured value y becomes higher than the preset thresh-
old (0.78). The value of residual error signal was approx-
imately zero, but it significantly increased when sensor 
fault. Through the results of simulation experiments has 
shown that, based on GRNN network the data fusion 
technology of fault diagnosis had an excellent diagnostic 
accuracy for drift fault and abrupt fault of the methane 
sensor. 

 
Figure 8.  Estimations of GRNN and BP-based approximation 

 
Figure 9.  Residual error between GRNN and BP-based approximation 

 
Figure 10.  Residual error of the methane sensor at the collision fault  

 
Figure 11.  Residual error of the methane sensor at the hang fault 
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Figure 12.  Residual error of the methane sensor at the drift fault 

 
Figure 13.  Residual error of the methane sensor at the periodic fault 

IV. CONCLUSIONS 
With a detailed analysis of the influencing factors of 

methane concentrations, the GRNN approximation is 
constructed for methane sensor fault diagnosis based on 
multi-sensor data fusion. The approximation value is used 
to determine whether a methane sensor is operating nor-
mally. The fault diagnosis of methane sensors is achieved 
by choosing an appropriate threshold. 

A comparison is applied between the two models of 
GRNN and BP neural network. The Simulation results 
show that the proposed model is much more precise in the 
approximation of methane concentrations. Fault diagnosis 
for methane sensors using generalized regression neural 
network is effective and more efficient. The proposed 
fault diagnosis model is also applicable to other methane 
sensors except for T1. 
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