
AN ADVANCED INTERACTIVE INTERFACE FOR ROBOTICS E-LEARNING

An Advanced Interactive Interface for
Robotics E-Learning

doi:10.3991/ijoe.v4i4.561

C. A. Jara, F. A. Candelas and F. Torres
University of Alicante, Spain

Abstract—Virtual and remote laboratories have improved
learning and training in the academic community. They
allow students to acquire methods, skills and experience
related to real equipment in an intuitive and cost-effective
way. The purpose of this paper is to present the
development and the implementation of an e-learning
environment in the field of Robotics. The main aim of this
application is to allow students to simulate and to
teleoperate a robot arm in an easy and user-friendly way,
although it also includes many novel advanced features. The
application has been developed using Easy Java Simulations
(EJS), an open-source tool for people who do not need
complex programming skills.

Index Terms—Educational technology, simulation software,
telerobotics, virtual and remote laboratories.

I. INTRODUCTION
Theoretical lessons do not provide enough robotic

knowledge for students. Laboratory work offers them
practical issues to improve their robotic experience.
However, many problems exist in giving students
sufficient educational robotic laboratories. These include
expensive equipment and limited time. As a solution to
this, new technologies such as Virtual and Remote
Laboratories in telerobotic systems provide a distance
teaching framework which meets the student hands-on
learning needs. They solve the problems mentioned above,
offering a great number of advantages:
• Remote practices: students can take part without

having to be present in the laboratory.
• Learning in a free and flexible way in contrast to a

fixed and regular class schedule.
• Remote access to real equipment that allows the

management of robots through the Internet from
anywhere at anytime.

• Expensive systems can be used, which would
generally be impossible in common situations.

This paper presents a virtual and remote laboratory
called RobUaLab.ejs for training and learning in robotics.
In general, this application allows a complete simulation
of a robot arm by means of a virtual environment based in
a Java applet. Path planning algorithms validated in the
simulation can be executed in a real remote robot through
the Internet. In addition, this telerobotic system developed
has other interesting features such as: 1) feedback to the
user both on online video and graphical updating of the
3D simulation; 2) the use of high level protocols
(HTTP/HTTPS) to have a transparent communication; and
3) a very realistic graphical interface (Fig. 1).

Figure 1. Real-Virtual environment

Nowadays, there are other robotic e-learning systems
developed for an educational purpose. Among them, it is
worth mentioning the following:
• ARITI [1]: a telerobotic system that allows to control

a robot with an interface based on Virtual Reality
(VR) and Augmented Reality (AR).

• UJI Robot [2]: a multi-robot architecture system that
gives access to a robot arm by means of an interface
which uses VR and AR.

• Robolab [3]: an open architecture for simulating and
tele-operating different robot arms through the
Internet.

• VISIT [4]: a telerobotic application which has
advanced robotic technologies.

In contrast to the above mentioned systems, the virtual
and remote laboratory presented here has the advantages
of an application based on Easy Java Simulations (EJS)
[5]: full portability and an interactive graphical user
interface based on VR and AR. In addition, it allows one
to manage many robotic functions which are novel in a
free Java application like this.

The e-learning application presented is being used in
the course “Robot and Sensorial Systems” in the
Computer Science degree at the University of Alicante.
Moreover, this system belongs to a network performed by
different virtual and remote laboratories from Spain,
coordinated by Prof. Sebastian Dormido called
“AutomatLab” (http://lab.dia.uned.es/automatlab). With
this virtual platform, students and teachers can experiment
with real equipment and share knowledge by means of a
collaborative environment based in eMersion [6].

This paper is organized as follows. Section 2 discusses
the technical implementation of this robotic system, which
includes the hardware components, software architecture
and communication protocols. Afterwards, Section 3
describes the main features of the virtual laboratory
developed. The remote capabilities are shown in Section
4. Next, some experiments performed with the application
are explained in Section 5. Finally, the conclusions and
some future work lines are shown in Section 6.

iJOE – Volume 4, Issue 4, November 2008 17

http://dx.doi.org/10.3991/ijoe.v4i4.561�
http://lab.dia.uned.es./automatlab�

AN ADVANCED INTERACTIVE INTERFACE FOR ROBOTICS E-LEARNING

II. TECHNICAL IMPLEMENTATION

A. Hardware Components.
The different hardware components are shown in

Figure 2. There are two clear parts linked by the Internet:
the user’s computer and the laboratory equipment. The
User’s PC requires only Internet access, a web browser,
Java and Java 3D runtimes components as software. This
allows users to use different kinds of computers or
operating systems in order to run the application from
anywhere at anytime.

In the laboratory, the only pieces that require a
considerable investment are the robot arm, its controller
and the automatic conveyor belt. For the development of
this robotic lab, a robot Scorbot ER-IX (Intelitek) of 5
DOF with an electric gripper is used for teleoperation. The
rest of hadware components are simple computers.

The Main Server is a PC which includes the web site
from where the user can download the Java application to
simulate and to teleoperate the robot. The Tele-operation
Server validates the commands that the robot receives
from a user’s computer, translates them to the appropriate
robot language, and sends them to the robot controller.
The IP camera allows users to receive video streams by
means of the HTTP protocol as feedback during the
teleoperation processes. Finally, a PLC connected with the
Main Server permits remote power control of the
laboratory .

B. Software architecture.
With regard to the software design, there are three main

blocks to be considered: the Client Applet, the Main
Server and the Tele-operation Server software (Fig. 3).
The Client Applet is an EJS application that can be
downloaded from the Main Server. In this program, the
main parts are the robot model which manages the 3D
simulation, which is based in the EJS library of Java 3D,
and the functions used in the teleoperation tasks.

When the user gets a path planning validated by the
simulation, he can request the teleoperation module from
the application. At this moment, a PHP module takes over
the control, and verifies the user’s identity. If the user is
registered in the user database, the PHP module creates a
socket communication which acts as a bridge between the
Client Applet and the Tele-operation Server.

Figure 2. Hardware components

Figure 3. Software architecture and communication protocols

The Tele-operation Server is a Java program that
attends connections from the Main Server. A connection
includes a command list to be executed in the robot and
the corresponding feedback data. When the Tele-operation
Server receives a command list, it does a simulation of the
commands in order to verify that they are correct. This
simulation is based on the same robot model as the client
application and guarantees the correct use of the robot.

C. Communication protocols
The protocols HTTP and HTTPS are used in the

communication between the Client Applet and the Main
Server (Fig. 3). The main advantage of using high-level
protocols is that any connection between a client and the
web server is possible, independently of the networks and
firewalls to be crossed, provided that the necessary ports
are enabled. This simplifies the use of the application
since users do not have to configure any network device
or firewall.

The data exchanged between the client and the Main
Server is codified as URL strings to be sent in HTTPS.
These data include information such as the user login,
configuration parameters or the command to be executed
by the robot arm. On the other hand, the communication
between the Main Server and the Tele-operation Server is
done through TCP sockets and UDP packets because the
computers are in the same private LAN. After the client
has been connected to the Main Server and the login
authentication process has been successful, a
communication between the client and the teleoperation
server is established over the HTTPS and TCP/UDP
protocols. This communication allows the exchange of
high level commands from the client applet to the Tele-

18 http://www.i-joe.org

AN ADVANCED INTERACTIVE INTERFACE FOR ROBOTICS E-LEARNING

operation Server and feedback data in the opposite
direction (Fig. 4).

Figure 4. Scheme of the teleoperation with real-time feedback

The client sends a list of commands, which are
previously tested in a simulation. Each command of the
list is composed of a type-identifier which represents the
order to be executed, the joint values associated with the
command, and the times associated to the movements of
each joint. It should be pointed out that the system does
not perform a control-loop of the robot through the
Internet (Fig. 4). Only tested command lists are sent to the
Tele-operation Server to be executed remotely by the
robot arm, in order to get real movements.

Finally, the HTTP protocol is also used to remote
control both the PLC and the IP camera.

III. THE VIRUTAL LABORATORY
The virtual lab developed implements a large amount of

options suitable for robotic e-learning. Students will be
able to learn complex robotic concepts by means of a VR
environment in an easy way. This section describes the
main features of the virtual part of the applet and all the

possibilities which are implemented for the user
experimentation.

A. User interface
The appearance of the user interface is shown in Figure

5. The lower part on the left shows a 3D representation of
the workspace where the robot arm is displayed. This
robotic simulation has been developed using the Java 3D
capabilities of EJS and represents a complete virtual
model of the real environment. On the right of the
application, there are some control display panels where
users can view the time evolution of some model
variables: position and speed (Pos_Speed panel),
acceleration and actuator torque (Dynamics panel),
transformation and Jacobian matrices (DataC panel), and
the dynamic equation matrices (DataD panel). The control
menu located in the upper part of the diagram allows users
to save the experiments performed both in image format
and in Matlab m-file format (eJournal option). This
permits users to share result experiments with other users
by means of the collaborative environment where the
application is embedded. Finally, the upper part of the left
contains several button controls with options which will
be explained in the next subsection.

B. Virtual laboratory’s options
The virtual environment developed allows users to

experiment with a lot of options. Many of them are novel
in a free Java application like this. Among them, it is
worth pointing out:
• Kinematics: users can move the robot specifying both

the exact joint values (direct kinematic) and the
Cartesian coordinates of the end effector (inverse
kinematic). Denavit-Hartenberg systems,
transformation and Jacobian matrices can be seen in
the user interface. In addition, the application detects
possible singularities in the robot workspace.

Figure 5. User interface

iJOE – Volume 4, Issue 4, November 2008 19

AN ADVANCED INTERACTIVE INTERFACE FOR ROBOTICS E-LEARNING

• Path Planning: users can practice and carry out
movements of both joint trajectories (synchronous,
asynchronous, splines and 4-3-4 polynomial
trajectory) and Cartesian trajectories (line). The
simulated trajectories can be stored in a command list
and simulated sequentially. The user can also import
and export trajectories to the software from a text file
easily (Fig. 6).

• Environment modeling: users can introduce specific
virtual objects in the workspace to do pick & place
operations.

• Dynamics: users can evaluate the torques in the
actuators when the virtual robot is simulating a task.
They can modify dynamic parameters such as link
masses, inertias and viscous friction from the robot
and realize how the dynamics change.

• Off-line-programming: users can programme Java
routines in the simulation. They can create variables,
mathematical operations and order movements (Fig.
7). The trajectories simulated in the routines are
stored in the command list to simulate sequentially.
As well as in the path planning, users can import and
export programs from a text file. A complete
experimental example of a virtual off-line-
programming routine will be shown in Section V.

• Virtual Camera: users can view a virtual workspace
projection of an eye-in-hand virtual camera. This
option will be used to perform visual servoing
applications in future developments.

• Visualization data: as mentioned before, users can
view in real-time all the values about the position
transformation, kinematic and dynamic models of the
virtual robot (Fig. 8).

IV. REMOTE CAPABILITIES
The application presented allows controlling remotely

real equipment through the Internet. These remote
experiences enhance the accessibility of experimental
setups providing a distance teaching framework which
meets the student hands-on learning needs. The next
subsections explain the remote capabilities of the system
and the way to access them.

Figure 6. Path Planning interface

Figure 7. Off-line-programming interface

A. Schedule system
The application is embedded in a user restricted

environment. Authorized students can download the
applet at anytime from anywhere and experiment with
only the options of the virtual laboratory. Remote access
to real equipment is controlled by a schedule system.
Thus, users can make a reservation of the real lab
specifying the experiment timetable (day and time). This
action creates a new line in the User Data Base from the
Main Server (Fig. 3) with the user and experiment data
(name, password, start and end of time of remote access).
A thread process installed in the web server checks that
users are in their correct timetable when they experiment
with the real lab. In this way, only one user can control the
robotic plant at the same time and it avoids multiple user
connections.

B. Teleoperation options
The application allows the execution of high level tasks

permitting users to interact with the real plant in a friendly
and easy way. This remote experimentation is based on
the high level protocols HTTP and HTTPS. This way,
users do not have to open any port or firewall for the
teleoperation and they only need a common Internet
connection.

Figure 8. Visualization data about robot kinematics and dynamics

20 http://www.i-joe.org

AN ADVANCED INTERACTIVE INTERFACE FOR ROBOTICS E-LEARNING

Figure 9. Remote experimentation using augmented reality

The teleoperation options implemented in the
application allows the remote control not only of the
robot, but also of some electronic devices of the real
laboratory. They are the following:
• Remote PLC/Camera control: authorized users can

control from the applet both some PLC control
parameters (switch on/off both the light and the robot
controller) and the real camera projection (pan, tilt
and zoom).

• Remote robot control: according to a schedule, users
are able to execute remotely in the real robot the
command list stored in the virtual simulation. As
mentioned before, the path planning sent to the real
robot is previously checked in the Teleoperation
Server which detects the possible collisions of the
robot-arm with its environments and with itself.

• Feedback options: the application gives the user two
options for performing the feedback of a
teleoperation: an online video stream and graphical
updating of the 3D simulation with the current
position of the real robot.

• Augmented Reality: the real information from the
robot scenario is complemented with some virtually
generated data from the virtual environment (Fig. 9).
Virtual projection is combined with the current state
from the remote laboratory taking into account
current IP camera setting and the 3D environment.
This feature helps to improve user performance and
provides more information to control the robot.

V. EXAMPLES OF EXPERIMENTS
In this section, two experimentation examples about the

powerful of the virtual and remote laboratory developed,

will be shown. One of them about the off-line-
programming tool of the virtual environment, and the
another one about the remote capabilities of the
application.

Off-line-programming allows users to develop Java
routines in the simulation. They can create variables,
mathematical operations and objects in Java language. In
addition, a Java library included in the applet provides
classes and methods in order to move the virtual robot.
Thus, a student can program tasks in the virtual
environment using this library. For a detailed description
of the available classes and methods for off-line-
programming, see Table I.

The common structure that students must follow to
program an off-line task is the following:
• Declaration of the positions (joint or Cartesian

values) and time in form of double variables and
arrays.

• Creation of the positions objects by means of classes
posJ and posC. The parameters for these objects are
the double variables and arrays initialized before.

• Declaration of the movement commands. Users can
use the methods moveJ for joint movements or
moveC for Cartesian movements. The parameters for
these methods are the objects posJ and posC created
before.

iJOE – Volume 4, Issue 4, November 2008 21

AN ADVANCED INTERACTIVE INTERFACE FOR ROBOTICS E-LEARNING

TABLE I.
CLASSES AND METHODS OF THE PROGRAMMING JAVA LIBRARY

Classes/Methods Description

posJ (double[] position) Class for define joint positions.
Parameter: double array

posC (double[] position) Class for define Cartesian positions.
Parameter: double array

moveJ (String traj, posJ p, int grasp, double time) Method for robot joint movements
Parameters: type of trajectory, position, open/close grasp, time.

moveC (String traj, posC p, int grasp, double time) Method for robot Cartesian movements
Parameters: type of trajectory, position, open/close grasp, time

home_robot (int grasp) Method to move the robot at home position
Parameter: open/close grasp

open() Open the grasp
Parameter: -

close() Close the grasp
Paramenter: -

belt() Switch on the conveyor belt until an object detection
Paramenter: -

When a program is compiled and executed successfully,

the trajectories simulated by the virtual robot are stored in
the command list. This allows users to experiment
remotely in the real robot with the path planning algorithm
validated in the simulation. Next, a programming example
of a pick-and-place task (subsection A) and a remote path
planning execution (subsection B) will be described.

A. Pick-and-place experiment
The programming experiment consists of doing a pick-

and-place operation of an object located in the conveyor
belt. Figure 10 shows the corresponding program of this
task. As mentioned before and it can be seen in Figure 10,
there are three different parts in the program’s structure:
1) declarations of the positions; 2) creation of the objects
posJ; and 3) definition of the order movements. In these
last methods, users can specify the trajectory that they
want to use. In the example proposed, the task is
performed by means of a 4-3-4 polynomial trajectory
(parameter “434” in the method moveJ), a smooth robot
movement with acceleration and speed continuity. This
path planning divides the robot trajectory in three parts:
actuator acceleration (a fourth-order equation), time of
maximum actuator velocity (a third-order equation) and
actuator deceleration (a fourth-order equation too). The
temporal evolution of the robot joint position during the
pick-and-place experiment is shown in Figure 12.

Figure 11 shows the states of the virtual robot during
the execution of the pick-and-place experiment. The
image sequence represents each of the joint positions
programmed in the routine. Before the first position of the
virtual robot, the conveyor belt is switched on to detect the
object. This order correspond with the method “belt()” of
the Java program (Fig. 10).

The grasped object has its respective mass and inertia.
However, their real values are very low. In order to realize
how the dynamic changes, the object’s mass was
increased to five kg. In this way, the temporal evolution of
the effective torques will change when the virtual robot
grasps the object. As it can be seen in the image sequence,
the virtual robot transports the object in the trajectories 3,
4 and 5. Figure 12 shows how the robot’s dynamics
changes during this time. The robot torques increase
considerably in comparison with the rest of the path
planning due to the high object’s mass and inertia.

B. Remote path planning experiment
This subsection shows the remote execution of a path

planning experiment. As mentioned in Section IV, the
teleoperation is based on high level order movements over
the HTTPS protocol. Thus, path planning algorithms
validated in the simulation will be able to be sent for
remote execution in the real plant.

In order to ensure the correct use of the robot, the
application applies a security system based on the
following criteria:
• The Robot Model of the virtual lab (Fig. 3) checks

that the trajectory simulated does not exceed the
maximum velocity and acceleration allowed in the
robot.

• The virtual environment validates that the trajectory
simulated has not any singularity during its
execution.

• The Teleoperation Server software checks that the
trajectory sent to the real robot does not have any
collision with other objects from the workspace or
with itself.

In this way, after simulating a path planning algorithm
validated in the virtual lab, users are able to execute it
remotely.

The experiment proposed consists of a synchronous
trajectory of four seconds long. Figure 13 shows the states
of the real robot together with the user interface during the
execution of the path planning experiment. The right
image represents the IP camera video stream, and the left
image shows the graphical updating of the 3D simulation.

As it can be seen in the image sequence, 3D graphical
updating is slightly delayed regarding the real image. This
fact is due to feedback data from the current position of
the real robot is performed through HTTPS requests and
this protocol is always put down at some delay time.

Despite the above mentioned, authors have assessed
communication delays to evaluate the quality of this
educational tool. The remote experiment was performed with
a PC located in the same province by means a common
Internet connection. The system was able to receive ten
different joint coordinate values from the path planning
teleoperated in the real robot, a synchronous trajectory of
four seconds long.

22 http://www.i-joe.org

AN ADVANCED INTERACTIVE INTERFACE FOR ROBOTICS E-LEARNING

Figure 10. Off-line-program of the pick-and-place experiment

Figure 11. States of the virtual robot during the execution of the pick-and-place experiment

Figure 12. Temporal evolution of the joint position and torques

iJOE – Volume 4, Issue 4, November 2008 23

AN ADVANCED INTERACTIVE INTERFACE FOR ROBOTICS E-LEARNING

Figure 13. Remote path planning experiment using augmented reality

24 http://www.i-joe.org

AN ADVANCED INTERACTIVE INTERFACE FOR ROBOTICS E-LEARNING

VI. CONCLUSIONS AND CURRENT LINES OF WORK
In this paper, the virtual and remote laboratory

RobUaLab.ejs, for the simulation and teleoperation of an
industrial robot arm, has been presented. Our system is
mainly oriented towards the training and e-learning of
robotic concepts.

The application has been developed using EJS, an
open-source tool designed for the creation of interactive
simulations. In this way, the procedure to transform the
robotic system in an interactive virtual laboratory has been
easier to do than the majority of programs available. It has
not been necessary to learn specific programming skills
and a big investment of time has not been needed to create
the application.

With the virtual lab developed, students can learn
robotic concepts such as direct/inverse kinematic, path
planning, dynamics and programming. The user interface
is very user-friendly, and the graphical simulation very
realistic.

The remote capabilities of the application allow users to
experiment with real equipment. Remote experimentation
of high level tasks based on AR encourages students to
learn robotic concepts and provides them with a realistic
hand-on experience.

Finally, the system presented collects a lot of interesting
virtual and remote features (complete robot simulation,
robot dynamics, remote power and robot control,
augmented reality, etc.), which are difficult to find
together in a free Java applet like this. The advanced
features which contains the application only are usually
available in professional or specific software tools.

At present, new features are being incorporated into the
virtual laboratory, such as a system for 3D recognition and
modeling of the objects that the robot arm handles. The
virtual environment only allows users to pick and place
operations with virtual objects introduced from the applet
(see subsection III.B). However, it is very interesting that
users can also teleoperate the handling of objects with the
robot arm. In this way, the virtual environment will
represent the objects from the real workspace.

Figure 14 shows the recognition algorithm proposed.
The Java applet will recognize real objects from the IP
camera images. Therefore, pick-and-place operations
programmed in the virtual lab will be able to be performed
in the real plant.

ACKNOWLEDGMENT
Authors of this document would like to thank Pr.

Sebatián Dormido from UNED University, the main
manager of the AutoMatLab project, Dr. Francisco
Esquembre from University of Murcia, the creator of EJS,
and the “Ministerio de Educación y Ciencia” of the
Spanish Government for its financial support.

Figure 14. Computer vision algorithm to recognize real objects

REFERENCES
[1] Augmented Reality Interface for Telerobot Application Via

Internet, http://lsc.cemif.univ-every.fr:8080/Projects/ARITI .
[2] R. Marin, P. J. Sanz, P. Nebot, and R. Wirz, “A multimodal

interface to control a robot arm via the web: A case study on
remote programming,” IEEE Transactions on Industrial
Electronics, vol. 52, pp. 1506-1520, Dec. 2005.
(doi:10.1109/TIE.2005.858733)

[3] F. A., Candelas, C.A. Jara and F. Torres, “Flexible virtual and
remote laboratory for teaching Robotics”, 4th Int. Conf. on
Multimedia and Information & Communication Technologies in
Education, vol. 3, pp. 1959-1963, Nov. 2006.

[4] K. Kosuge, J. Kikuchi and K. Takeo, VISIT: A teleoperation
system via the computer network, Beyond Webcams: an
introduction to online robots, MIT Press, Cambridge, 2002.

[5] F. Esquembre, “Easy Java Simulations: a software tool to create
scientific simulations in Java”, Computer Physics
Communications, vol. 156, pp. 199-204, Jan. 2004.
(doi:10.1016/S0010-4655(03)00440-5)

[6] D. Gillet, N. Anh, and Y. Rekik, “Collaborative web-based
experimentation in flexible engineering education”. IEEE
Transactions on Education, 48, 696-704, Nov. 2005.
(doi:10.1109/TE.2005.852592)

AUTHORS
Carlos A. Jara is with the Department of Physics,

System Engineering and Signal Theory, University of
Alicante, Carretera de San Vicente del Raspeig, s/n, 03690
San Vicente del Raspeig, Alicante, Spain. Email:
cajbdfists.ua.es.

Francisco A. Candelas is with the Department of
Physics, System Engineering and Signal Theory,
University of Alicante, Carretera de San Vicente del
Raspeig, s/n, 03690 San Vicente del Raspeig, Alicante,
Spain. Email: francisco.candelas@ua.es.

Fernando Torres is with the Department of Physics,
System Engineering and Signal Theory, University of
Alicante, Carretera de San Vicente del Raspeig, s/n, 03690
San Vicente del Raspeig, Alicante Spain. Email:
fernando.torres@ua.es.
This work was supported in part by the research project DPI2005-0622
and the FPI grant BES-2006-12856.
Manuscript received 19 June 2008. Published as submitted by the
authors.

iJOE – Volume 4, Issue 4, November 2008 25

http://lsc.cemif.univ-every.fr:8080/Projects/ARITI�
http://dx.doi.org/10.1109/TIE.2005.858733�
http://dx.doi.org/10.1016/S0010-4655(03)00440-5�
http://dx.doi.org/10.1109/TE.2005.852592�

