
HYDRAULIC PLANT REMOTE LABORATORY

Hydraulic Plant Remote Laboratory
V. Žilka, P. Bisták, P. Kurčík

Slovak University of Technology in Bratislava, Slovakia

Abstract—In this paper we present a three tank hydraulic
system and possibilities how it can be used for the purpose
of remote laboratories. The concept of our remote
laboratory is based on client – server architecture. We
compare two different approaches of remote control. First
one uses a Java Server application implemented together
with a control algorithm on the server side. In this case the
control algorithm is realized in the Matlab/Simulink
environment. There is necessary to exchange data between
the Matlab and the Java Server application what is done
through the COM technology. The second approach uses
PC-independent network card which runs its own TCP
server and the control algorithm is implemented on client
side.

Index Terms—hydraulic plant, remote laboratory,
teleexperiment

I. INTRODUCTION
Remote laboratories represent very useful tools in the

engineering education. They enable to monitor and
manipulate real systems from a distant location. A remote
laboratory user can access the equipment from any point
where the Internet connection exists and the equipment is
available almost anytime.

The philosophy of a remote laboratory is usually based
on client server architecture. This paper describes a
remote laboratory for control purposes [2]. The controlled
plant is a hydraulic plant. Plants of this type offer few
advantages that designate them to be used in remote
laboratories, like clear physical visibility of controlled
values and time constants in range where sampling
periods in order of hundreds of milliseconds are sufficient.
Plant is controlled locally within Matlab environment as
well as remotely using Java server or PC-independent
network card. Graphical user interface on the client side
was created in the Easy Java Simulations software [1,4].

II. PLANT DESCRIPTION

A. Plant hardware
The hydraulic plant (Fig. 1) consists of two electrical

water pumps, three interconnected vertical tanks and the
central tank serving as a water reservoir and five solenoid
valves. Each of the pumps can supply water from The
reservoir into one of three tanks. Reconfiguration can be
done by inserting output hoses from the pumps into
desired tanks. By default the first pump supplies first tank
and the second pump the second one. Both pumps are
continuously controlled by PWM signal generated on the
control board. Connections between the tanks can be
controlled by means of electrically controlled solenoid
valves. Drain from each of the tanks to the central
reservoir can be also controlled by three solenoid valves.

Each tank has an emergency drain with high throughput to
prevent overflow when user control algorithm fails. This
setup allows us to use the plant as three, two, or one tank
system, whenever the desired experiment needs it. The
advantage of solenoid valves is that they can be, as well as
electrical pumps, controlled remotely which designates the
plant for use in teleexperiments.

Figure 1. Front view of hydraulic plant

B. Communication interface
The plant has 7 input variables and 7 output variables

totally. Plant structure is shown in the Fig. 2. Plant inputs
include two integer inputs for controlling power of both
pumps and five binary inputs for controlling the solenoid
valves. Outputs consist of three values corresponding to
levels in the three tanks, next the values represent filtered
levels and last value is ambient temperature. The filter
time constant is approximately 20s [5].

Figure 2. Block diagram of 3-tank hydraulic plant

iJOE – Volume 4, Special Issue 1: REV2008, July 2008 69

HYDRAULIC PLANT REMOTE LABORATORY

The plant can be connected to the PC either via analog
interface or preferably via USB interface. USB interface
offers many advantages, compared to traditionally used
analog interfaces and data acquisition cards. To name a
few: plant initial setup is much less difficult, there is no
need to open the computer case, it allows the use of plant
with laptops and it is cheaper, because one does not need
additional data acquisition card. We have developed one-
block interfaces for Matlab / Simulink and for Scilab /
Scicos.

Different approach we used to communicate with the
plant does not need rebuilding of the simulation scheme
after user change something in it and thus allows faster
and more interactive work with the plant.

III. REMOTE CONTROL USING JAVA SERVER WITH MATLAB

A. Client-server application
This is the example showing the use of the hydraulic

plant in virtual laboratory for remote experiment via
Internet. For use in pedagogical process we designed a
simple client – server application. Basic scheme for the
client – server application is in the Fig. 3.

Figure 3. Client-server architecture

B. Java Server application
The server application is the central part of the whole

system. It runs on the PC connected directly to a certain
real plant. In our case its main function is to transfer
commands and send the output data from the controlled
plant to the client. Another necessary feature is that the
server should cooperate with the Matlab/Simulink
application that directly controls the plant. The server
application is platform dependent. On the Windows
platform there exists several possibilities how different
applications can exchange data (DDE - Dynamic Data
Exchange, ActiveX, COM - Component object model,
…). For this purpose we used the JMatLink library [6] that
was written for communication between Java applications
and the Matlab application [4]. Our Java server
application is based on the COM technology.

Component object model (COM) is technology
developed by Microsoft. It defines a language-
independent binary standard for component
interoperability. It is used to enable interproces
communication and dynamic object creation in any
programming language that supports the technology.
Using COM, developers and end users can select
application-specific components produced by different
vendors and integrate them into a complete application
solution. The essence of COM is a language-neutral way
of implementing objects such that they can be used in
environments different from the one they were created in,
even across machine boundaries.

The server application communicates with the client
application through the TCP/IP connection. After the
client establishes the connection with the server
application the server starts the Matlab Engine and waits
for commands that are transferred immediately to the
Matlab. The measured data are transferred back from the
server to the client.

C. Controller running on server side using MATLAB
For the testing purpose we used the PD controller of

dynamic class 2. Design of this controller was described
in [8]. Controllers of dynamic class 2 can be very efficient
with second order systems – e.g. two level hydraulic
system. Block diagram of the controller in Matlab /
Simulink is in the Fig. 4.

Figure 4. Block diagram for PD2 controller

D. Easy Java Simulations
For the creation of the client part we used the Easy Java

Simulations (Ejs) development environment. Ejs is an
open source tool, which provides a simplified structure for
creation of the model of the simulation. User’s
responsibility is the design of the view, providing the
variables and algorithms that describe the model of the
simulation.

Ejs can generate the Java source, compile it into Java
classes, pack the classes in a Jar file, and produce several
HTML pages with the author-provided narrative and the
ready-to-run applet for the simulation [1].

However we are not only using the simulations in Ejs,
because it can cooperate with Matlab and Simulink when
it is installed on the same computer. This possibility is
included directly in the distribution of Ejs. Ejs can call
Matlab functions, send and read data, variables, and also
Simulink models, including setting of simulation
parameters.

70 http://www.i-joe.org

HYDRAULIC PLANT REMOTE LABORATORY

E. Client description
As we mentioned at the beginning of the paper, all

parameters have electronic control, so we have full control
over settings of the hydraulic plant. In the Fig. 5 we can
see the control panel for a control of two levels.
Visualization of the process is placed at the top of the
control panel. It shows the current value of water levels in
two tanks (range 0 – 0.3m), status of valves (we can
change status with mouse click on valves before starting
real experiment) and also the rotation speed of the
crosslets in the pumps that is related with the real pump
power. All pipes leading to pumps and from pumps are
animated according to presence of water. Below the
visualization we can select a controller from two available
choices – manual control and PD2 controller for two level
system. According to the selected controller the control
panel which contains all necessary parameters and
variables is displayed.

Figure 5. Remote user interface created with Ejs –complex view

Figure 6. Remote user interface created with Ejs –detailed view

Figure 7. Client’s plotting window

The default values of variables are predefined, but we
can set new values of course. It is easy to set the IP
address of the server, current directory, where the m-file
and the model are located, name of the m-file, simulation
time, name of the model, step size for simulation and for
this regulator also requested value of the second level –
there are three steps for better testing of the controller.

The buttons for starting the experiment with set values,
load data, reset and the button for clearing the output
window are located bellow. The analysis of the data from
the experiment is also very important. This version of
client application can export measured data from the
Matlab workspace on the server to the status window (in
Matlab format) and they can be easily selected by mouse,
and copied to client’s Matlab.

IV. REMOTE CONTROL USING HARDWARE BASED
ETHERNET INTERFACE

A. TCP server running on netLINK ethernet card
To evaluate an alternative control approach, where the

regulator itself is located at remote location we used the
netLINK Ethernet interface card. We benefited from fact
that the Hydraulic plant is beside of the USB and the
analog interface also equipped with auxiliary serial
communication port which we used to connect the
netLINK card.

In this application the netLINK is configured as
Ethernet to serial converter which runs its own TCP
server. Due to card hardware limitations, the server is able
to maintain only one active client session at a time. For the
same reason we have not implemented any encryption
methods which will probably slow down the card data
throughput as it is only based on 8-bit RISC
microcontroller. Advantage of this approach is however
that it does not need a PC running server in Matlab to
communicate with the plant.

To increase the safety of operation of the hydraulic
plant we implemented certain hardware and software
measures that prevent hazardous situations like a tank
overflow. Having those is very important when the plant

iJOE – Volume 4, Special Issue 1: REV2008, July 2008 71

HYDRAULIC PLANT REMOTE LABORATORY

is used remotely without any local supervision.
Furthermore there is a timeout protection that shuts down
all actuators if there is not any command received at least
once per 10 seconds.

B. Communication interface
Basic connection scheme is in the Fig. 8. The

communication chain contains the plant, the Ethernet to
serial converter, a router allowing access from outside of
the laboratory and the client application written in Ejs. To
establish communication with the server, client needs to
send the “open” command. After that the server registers
the client’s IP address and sends the “connected” string to
the client. When the client wants to terminate the session
it needs to send the “close” command. To prevent lockups
there is a possibility to open new session even if previous
was not closed by the “close” command. Basically the last
client that sends the “open” command takes control over
the plant. For the practical use in remote laboratory where
multiple users may want to use the plant some access
management at higher level needs to be implemented.

Figure 8. Communication using the netLINK converter

After communication session has started, client is able
to control the plant by sending control strings in the same
format as is used in communication through USB
interface. Strings need to have the “>” character added at
the beginning which indicates that this data needs to be
relayed to the netLINK’s serial port. Similarly, measured
data from the plant are relayed to the client at each sample
period. There is not any sampling clock in the plant itself
or the netLINK card; instead the client is controlling the
sampling rate by rate at which it sends the control strings
to the plant. When the plant receives the control string it
immediately responds with the string that contains the
current measured values.

C. Client description
The client interface is again built in Ejs software which

has been described in previous paragraphs. The visual part
is very similar to the previous client interface depicted in
the Fig. 5. Several buttons used with Matlab are not

needed. The structure of the client is however different as
in the approach with Matlab based server part. The main
parts of the Ejs client are outlined in the Fig. 9.

Figure 9. Block diagram of the client side

The most important part of the client is the
communication thread. Its main purpose is to establish and
then maintain the connection to the hydraulic plant. After
pressing the Connect button, client tries to establish TCP
session with the server. When the connection is
successful, client registers its IP address at the server by
sending the “open” command. Connection is then
maintained by periodically sending (at given sampling
rate) the control string to the plant, while actual measured
data are retrieved from the returned string. To prevent the
plant from safety actuator cut-off, thread needs to send
control string to the plant at least once per 10 seconds.

A network lag can cause (especially at higher sampling
rates) that returning data from the plant arrive later than
next sampling interval has begun. In that case inputs from
the previous sample are used to calculate the regulator
action and user is notified with the timeout message.
Sampling rate should be set accordingly to prevent the
timeouts as much as possible, while maintaining sufficient
sampling rate for the used control algorithm.

The control algorithm is running in the Evolution card.
This is the main difference with the previous approach
where the control algorithm has been calculated on the
server side. The type of the algorithm is the same as in the
previous case, i.e. it corresponds to the Matlab/Simulink
block diagram in the Fig. 4 but this time it is realized in
the Java language and calculated on the Evolution card of
the client built in Ejs. The control algorithm is called by
the internal Ejs command _step() each sampling period.
The time is controlled by the client. Due to network lag it
can happen that new measured data are not available as
mentioned above. The measured and sent data are
continuously visualized during the control process. This is
also difference with the previous case where data have
been downloaded after the control process has finished.
For the visualization part we used the same graphical
interface as we used in the previous case.

V. COMPARISION OF BOTH APPROACHES
The network control represented by the case using the

netLINK card is now the problem very often discussed in
the control community. Using the described experimental
setups it is possible to compare the advantages and
disadvantages of both approaches. The controlled process
has been represented by the hydraulic plant that belongs to
the slow processes. Therefore it is possible to apply also
the network control. From the responses of controlled
value (the height of the level in the second tank) one can
see, that there is no significant difference within the
responses shown in the part III.

72 http://www.i-joe.org

HYDRAULIC PLANT REMOTE LABORATORY

 a) b)

Figure 10. Control value responses for netLINK solution. Client has
been running a) within the same LAN, b) outside the LAN using

mobile Internet connetion

It is necessary to mention that the client using mobile
Internet connection (Fig. 10, b) has encountered a great
number of timeouts caused by the network lag. With the
sampling period of 0.333s there was obviously not enough
time to receive, calculate and send data in every sampling
period. Timeouts occurred almost in every second
sampling period. By increasing the sampling period two
times, the number of timeouts has been decreased
significantly. Several timeouts (approximately one per one
hundred of samples) appeared also when the network
control was carried out within the same local area network
(Fig. 10, a). Due to relatively slow behavior of the
process, we can conclude that the number of timeouts
does not significantly influence the quality of the control
process. On the other hand the network control offers
remote users to design and modify their own control
algorithms and they are not limited to use Matlab.

VI. CONCLUSION
The paper has shown that there are several possibilities

how to build remote laboratories. We presented two
approaches and compared them. First one based on the
Java server connected to the real equipment through the
Matlab allows running fast control algorithms but it is not
as flexible when concerning the changes of controller
structure, because there are problems with uploading m-
file and model to the server. There is also security hazard,
because Matlab can execute some dangerous commands.
For this reason it will be very important to have some
automatic control for m-files, which will filter any
potentially dangerous commands. Beside of that there is
need to implement authorization and scheduling system to
allow only one user at a specific time. Some of these
problems will be solved, when this teleexperiment will be
integrated into WebLab [7]. WebLab is an online tool for
administration of users, and scheduling. In some cases
price of the Matlab which is necessary for realization of
this approach can be disadvantage as well. In the future
we plan to replace the Matlab by free products like
Scicos/Scilab.

The second approach where the control algorithm is
calculated on the client side has no limitation to the
controller design but the controller must take into account

transport delays caused by network connection. Therefore
the second approach is not suited for fast dynamical
systems. The advantage of the second approach is also
highlighted by the fact that the remote user does not need
to upload the control algorithm to the server side and thus
his/her intellectual property of controller algorithm design
is kept.

REFERENCES
[1] R. Pastor, J. Sánchez, S. Dormido, Web-Based Virtual Lab and

Remote Experimenttion Using Easy Java Simulations, 16th IFAC
World Congress, 2005, Prague, Czech Republic

[2] Ch. Smid, Internet-basiertes Lernen, Automatisierungstechnik, 51,
No. 11, 2003, pp. 485-493.

[3] M. Huba, M. Kamenský, P. Bisták, M. Fikar, Blended Learning
Course Constrained PID Control, IFAC Conference Advances in
Control Education ACE’06, 2006, Madrid.

[4] P. Bisták, Remote Control of Thermal Plant Using Easy Java
Simulations, Int. Conf. on Interactive Computer Aided Learning
ICL’06, 2006, Villach, Austria.

[5] P. Kurčík, V. Žilka, M. Kamenský, Hydraulic Plant for Education
and Practicing, 8th Int. Conf. Virtual University, 2007, Bratislava,
Slovakia.

[6] S. Müller, H. Waller, Efficient Integration Of Real-Time
Hardware And Web Based Services Into MATLAB, 11th European
Simulation Symposium, October 1999, Erlangen, Germany .

[7] M. Huba, M. Šimunek, Modular Approach to Teaching PID
Control. IEEE Transactions on Industrial Electronics, VPL.54
No.6 December 2007, pp.3112-3121.

[8] M. Huba: Theory of Automatic Control 3. Constrained PID
Control. STU Bratislava 2006 (in Slovak).

AUTHORS
V. Žilka is with the Institute of Control and Industrial

Informatics, Faculty of Electrical Engineering and
Information Technology, Slovak University of
Technology in Bratislava, STU FEI Bratislava,
Ilkovicova 3, 812 19 Bratislava. (e-mail:
vladimir.zilka@stuba.sk).

P. Bisták is with the Institute of Control and Industrial
Informatics, Faculty of Electrical Engineering and
Information Technology, Slovak University of
Technology in Bratislava, STU FEI Bratislava,
Ilkovicova 3, 812 19 Bratislava. (e-mail:
pavol.bistak@stuba.sk).

P. Kurčík is with the Institute of Control and Industrial
Informatics, Faculty of Electrical Engineering and
Information Technology, Slovak University of
Technology in Bratislava, STU FEI Bratislava,
Ilkovicova 3, 812 19 Bratislava. (e-mail:
peter.kurcik@stuba.sk).

The work has been financially supported by the ESF project JPD 3
2005/NP1-047 „PhD students for Modern Industrial Automation in SR“,
code No. 13120200115, and VEGA Project 1/3089/06 Development and
Integration of Methods of the Nonlinear System Theory
This article was modified from a presentation at the REV2008
conference in Düsseldorf, Germany, June 2008. Manuscript received 1st
July 2008. Published as submitted by the authors.

iJOE – Volume 4, Special Issue 1: REV2008, July 2008 73

