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Abstract—Online experiments have been available for more 
than a decade. The integration of online experiments into 
collaborative environments is more recent. The wealth of 
client applications/environments, the versatility of possible 
interaction protocols/technologies and the needs for more 
autonomous actions impel the evolution of online 
experiments to the smart device concept. This paper reviews 
the evolution of an electrical drive experiment and presents 
the requirements for turning online experiments into smart 
devices. 

Index Terms—Agent, collaborative environment, online 
experiment, smart device. 

I. INTRODUCTION 
Online experiments are typically used by brokers to 

provide distant users with remote experimentation. For 
example, the access to an online experiment during a live 
demonstration in a classroom. Online experiments are 
often used in control, robotic and mechatronic education 
for illustrating theoretical principles and deployment 
methodologies. The different control design and 
implementation steps taught to students in control courses 
(system identification, controller design, real-time control, 
performance validation, etc.) can be efficiently carried out 
remotely on mechatronic systems as they exhibit visually 
observable dynamical behaviors.  

Remote experimentation solutions are based on a client-
server approach where the server is connected to the 
physical equipment and the client application is connected 
to the server via the Internet. The user interface can be of 
various forms but it is generally proposed through a web 
browser. The aim of a remote experimentation solution is 
to make the student interaction with the distant system as 
close as possible to the actual work on the real equipment. 
Collaborative environments are proposed to support the 
distant user learning process. These environments 
integrate various services to streamline the user 
experience and to help the user environment 
appropriation. To provide a tight integration of remote 
equipments within collaborative environments, specific 
care has to be taken regarding the interface, the provided 
features and the communication protocol. This 
customization leads to a very specific solution that is 
difficult or impossible to integrate into another 
collaborative environment. The concepts of smart devices 
are used to expand the online experiment scheme such that 
the proposed solution is adaptive, autonomous, as 
envisioned in the Internet of Things realm. 

This paper is organized as follows: the physical 
equipment locally controlled is first presented in 
section II. In section III, a communication component is 
added to permit remote access. The integration of online 
experiments into collaborative environments is presented 

in Section IV. Section V presents the smart device concept 
applied to online experiments and its requirements. 
Section VI concludes by presenting hints about smart 
device evolution. 

II. PHYSICAL EQUIPMENT AND LOCAL ACCESS 
The physical equipments remotely controlled are often 

mechatronic devices with moving parts as they exhibit 
visually observable dynamical behaviors. For example the 
laboratory-scale electrical drive (Fig. 1) is used in many 
textbooks and courses to illustrate automatic control 
theory. This setup consists of a DC motor equipped with a 
digital encoder. The motor drives a brass disk acting as the 
load. The angular position is measured with a digital 
encoder connected to the motor axle. Along the same axle, 
an enlarged rotating disk permits an easy visualization of 
the motion. This enlarged disk and the rotating load 
motion are captured by a video camera.  The whole 
hardware has been designed in such a way that it is fully 
controllable from the connected computer. Similarly, the 
hardware state can be diagnosed from the connected 
computer. For example, in addition to the required disk 
position and speed measurements, diagnostic signals 
informing about the power status can be read from the 
connected computer. Likewise, additional actuators have 
also been added. For example a second motor acting as a 
generator is placed along the main motor axle to generate 
a perturbation that can be controlled remotely by 
switching the generator load. Also, the main power can be 
switched on and off from the connected computer to save 
energy when not used. 

 
Figure 1.  Laboratory-scale electrical drive 
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Depending on its complexity and computational 
resource requirements, the control of the equipment can 
also be performed via an on-board micro-controller. The 
former solution offers more flexibility than the latter. 

The considered physical equipment is used by students 
to apply the control theory learned during ex-cathedra 
classes. For example, the experimentation protocol 
consists in choosing the right set of parameters to position 
the load or to impose a rotating speed according to some 
specifications. The PID controller is implemented as a 
real-time task that communicates with both the physical 
equipment and the graphical user interface (GUI) [1]. 

With the help of the graphical user interface, the users 
can experience the effect of the various controller 
parameters and see their effects on the physical 
equipment. Figure 2 shows the user interface of the 
application that locally controls the laboratory-scale 
electrical drive. It is written in LabVIEW [2]. The upper 
part displays the acquired measurement in a scope area. 
The lower part is intended for the user to modify the 
controller parameters as well as the reference signal. 

 
Figure 2.  Local control of the electrical drive 

III. FROM LOCAL TO REMOTE ACCESS 
Providing remote access to physical equipments 

controlled locally by a dedicated computer is fairly 
straightforward assuming that the computer is connected 
to the Internet. Depending on the required degree of 
interaction between the distant user and the physical 
equipment both turnkey and customized solutions can be 
envisioned. 

A. Turnkey solutions  
Nowadays many turnkey solutions are proposed by 

commercial applications. The quickest solution is the use 
of applications that enable the sharing of a distant 
computer screen (VNC, Remote Desktop, Timbuktu, etc.). 
While easy to implement this solution generally suffers a 
high bandwidth usage. Another drawback is that the user 
cannot see the physical equipment. Visualizing the 
controlled equipment is considered a key feature to 
differentiate simulation from real experimentation. Also 
directly accessing the remote server may grant too much 

rights to the distant user, permitting him/her to act on 
aspect he/she is not supposed to.  

Another kind of turnkey solution relies on specific 
applications that are able to generate a remote view of the 
local GUI. This view is generally displayed in a web 
browser. The server application can either generate a 
dynamic web page or require specific client applications 
(LabVIEW remote panel). Both solutions can be enabled 
with only a few mouse clicks but suffer the same 
visualization drawback as the screen sharing solution. 
While a video stream coming from an IP camera may be 
embedded to the web page containing the deported view, 
the information synchronization between the sources of 
information is added to the potential bandwidth problem. 

B. Custom-made solutions 
Custom-made solutions permit a finer control of all 

aspects involved in remote experimentation. This at the 
cost of additional developments to create both the client 
application and to add the network communication layer 
to the local application [3]. 

Various technologies can be used to implement the 
client application. Web-based technologies (web 2.0, Java, 
Flash, Silverlight, QuickTime, ActiveX, etc.) are the most 
widely used since they are ubiquitous and often pre-
installed within the web browser. 

Depending on the client application requirements, the 
chosen technology should provide the following features: 

• display GUI elements (button, etc.) 
• ability to get user actions and events (mouse, 

keyboard) 
• support communication protocol (TCP, UDP, HTTP, 

etc.) 
• timing synchronization (threads, timers) 

 

As of today Java is the most versatile option that 
permits the finest control of the client application. A 
solution that only uses standard web technologies (CSS, 
Ajax) without the help of plug-ins is possible provided 
that the web transmission protocol (HTTP/TCP) does not 
constrain the envisioned communication. Java provides 
the full control over the above features necessary to 
implement an advanced remote experimentation client. It 
especially permits to implement alternate transmission 
protocol (UDP) and allows a tight synchronization 
between the various flows of information (video, data, 
parameter). 

Figure 3 presents a java applet that enables to control 
the distant laboratory-scale electrical drive. The provided 
interface permits the user to change the various 
parameters of the PID controller and to see its effects in 
real-time via the oscilloscope area and the video feedback.  

The main adjunctions to the distant application that 
locally control the physical equipment (Fig. 2) are the 
video acquisition and transmission layer that allows 
remote clients to communicate with the online 
experiment. With these additions the local application 
becomes a server application. Additional requirements and 
best practices are presented in [4]. 
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Figure 3.  The client application implemented as a java applet 

IV. WEB 2.0 SOCIAL SOFTWARE FOR COLLABORATIVE 
LEARNING AND INTERACTION WITH ONLINE 

EXPERIMENTS  
The additional flexibility provided by remote 

experimentations is highly appreciated and permits distant 
users to manage the remote experimentation sessions at 
their own pace and from their own location [5]. One 
drawback is that the learning modalities often found on 
campus should be emulated. Collaborative learning 
support should be provided, as well as some forms of 
tutoring and assistance. Collaborative environments such 
as emersion [6] and elogbook [7] support the activities 
with online experiments by providing additional services 
such as shared spaces for saving measurements, 
discussion forums, live support, etc. The online 
experiments need to be specifically adapted to maximize 
the benefits offered by collaborative environments. Not 
only the client applications need to be adapted, but also 
the server application. For example authentication is often 
required by collaborative environments, thus the client 
and/or the server applications must be adapted to support 
authentication. Similarly, saving data in a shared space 
requires specific protocols that may not be present 
initially. When possible, some or all the required 
adaptations could be implemented by a proxy application 
that bridges both worlds. This translation is often done at 
the cost of performances. This proxy application bridging 
mechanism can be generalized as the concept of agent that 
works on the behalf of users, or in the presented case on 
the behalf of the online experiment server [8].  

Figure 4 shows the remote experimentation agent 
working on the behalf of both the user Chris and the 
equipment RT-201 within the elogbook collaborative 
environment. The measurements acquired with the help of 
the agent (center of Fig. 4) are directly saved within the 
shared space (right column of Fig. 4) and are visible for 
the members (left column of Fig. 4) of the given activity 
(top of Fig. 4). The agent has been granted the right to 
directly save measurements in the shared space after it 
authenticated using the provided elogbook mechanism. 

The original online experiment does not know about the 
elogbook, it is only aware of the elogbook agent. Using 
the agent concept, the online experiment could be 
interfaced by various collaborative environments but 
would require a dedicated agent for each new 

environment. To alleviate this restriction and to permit 
“any” client to access the online experiment, all agents 
should be hosted at the server side. While this is not 
directly feasible since all agents are not known before-
hand, the structure to support multiple types of 
connections, protocols, modes of operation and interfaces 
in an autonomous and self-contained way should be 
implemented in the server.  

 
Figure 4.  Remote experimentation agent in elogbook 

A server connected to physical equipment with the 
above capabilities and the ability to interact autonomously 
with other machines is called a smart device. In the above 
example the communication between the applet agent and 
the elogbook is performed with the help of webservices. 
When running in the standalone mode (Fig.3) the applet 
communicates with the smart device via raw UDP blocks. 

V. SMART DVICES 
Smart devices can be described as devices that have 

some autonomy to perform actions. Theses devices often 
have sensors and/or actuators and support communication 
with other devices. The interconnection of smart devices 
and other intelligent objects sketches the Internet of 
Things. 

The Internet of Things is a metaphor that envisions the 
connection of all existing objects for the universality of 
communication processes, for the integration of any kind 
of digital data and content, for the unique identification of 
real or virtual objects and for architectures that provide the 
communicative glue among these components [9]. 

Thomson [10] suggested that smart devices need some 
or all of the following capabilities:  

i) communication 
ii) sensing and actuating 
iii) reasoning and learning 
iv) identity and kind 
v) memory and status tracking  

 

A. Requirements for turning online equipment into 
smart devices  

Physically, the considered smart device is made of the 
adjunction of the controlling computer -the server- 
connected to the physical equipment on one side and to 
the Internet on the other side. The capabilities required for 
smart devices controlling physical equipment are twofold.  

The first set of requirements is related to the physical 
equipment. The physical equipment should be identifiable 
to define what kind of equipment is connected. Also the 
equipment should be fully controllable and diagnostic-
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able by the controlling computer. Due to security reasons 
the full controllability of the physical equipment may not 
be exposed to the outside world. Controllability also 
implies that it is always possible to place the equipment in 
a known state. Other requirements such as reliability and 
maintainability should also be considered. 

The second set of requirements is related to the 
interaction of the controlling computer and the outside 
world. This interaction implies that first the computer is 
connected to the Internet and capable of understanding 
incoming requests and to reply to them. It should also be 
capable of some autonomy to report for example alarms or 
its status. Security and authentication must also be 
provided. It should not be possible to temper with the 
physical equipment from the outside world. This is also 
true for the hosting computer and the engaged 
communications. In the considered case, the server may 
propose a graphical user interface to interact with the 
server. 

The communication requirements suggest that the 
server is able to talk any low level protocols such as TCP 
or UDP to get the requests and send replies, but also high 
level protocols or technologies such as HTTP, XML, 
REST, FTP, XML-RPC, WSDL, POP, MAIL, RSS, etc. 
to understand the requests. It is definitely not possible to 
implement all possible protocols but the structure to 
handle new protocols should be in place to minimize the 
development effort. The next section presents the chosen 
set of protocols to be implemented and the rational behind 
these choices. 

B. Smart device example 
The proposed smart device is an extension of the online 

experimentation server described in Section II. Initially, 
the sole task of the server was to control the physical 
equipment locally. Then a communication component was 
added to send measurements and to receive parameters 
from a home-built application using the UDP protocol. 
The access from a web browser required the writing of a 
Java applet and the associated server modifications. The 
integration of remote experimentations in collaborative 
environment implied the adjunction of new functionalities 
and new protocols and the use of the agent concepts. The 
global management of the available resources was also 
required to dynamically spread the load among the 
available online equipments leading to additional 
modifications at the server side. 

The current server is a smart device with an evolving 
structure that guarantees compatibility with existing 
solutions while streamlining the addition of new ones. On 
the physical equipment side, the server only exposes a 
limited set of actions that are validated prior to its 
application on the physical device. Similarly the server 
only provides aggregated information regarding the 
physical equipment to the outside world.  

The former client applications can interact with the 
smart device by sending UDP packets that contain 
parameters for the implemented controller. As a reply, 
client applications receive two UDP streams, one for the 
video feed and one for the measurements feed.  

The current collaborative environments (emersion and 
elogbook) do not have specific interface to the smart 
device. This interface is provided by the smart device in 
the form of a Java applet. The smart device is also able to 

handle the user credential to directly interact with the 
collaborative environment. This interface can also be used 
independently by web browsers without the need for a link 
to the collaborative environment. The interface 
functionalities will be adapted accordingly, for example 
user will be able to save measurements only on the user 
desktop and not in the collaborative environment shared 
space. 

In addition, the server features awareness information 
to the outside world. These information covers, among 
other information, the server status, connections statistics 
and usage statistics. Client applications can get the above 
awareness information through various channels. For 
example by opening a raw TCP connection to the server. 
Alternatively the client application can use a provided 
web service using the XML-RPC protocol. An RSS feed 
with the above information is also provided (Fig. 5).  

 
Figure 5.  Smart device status information via RSS Feed 

Last but not least, it is possible to send an email to the 
server to get the above information or to get for example 
measurements (Fig. 6). Interfacing programs via email is 
not new but has been forgotten over the years. However 
email support provides a simple and unobtrusive interface 
that is generally ubiquitously available [11]. 

The mechanism implemented for the awareness 
information is also available for the other streams of 
information (parameters, measurements and video).  

 
Figure 6.  Measurements sent via email 

The above information exchange relies on a request-
answer mechanism. The smart device is also able to push 
information to given recipients. In case of self-diagnosed 
malfunctions the server can send an email and an SMS 
(Fig. 7). A typical malfunction is the physical equipment 
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main switch set to OFF. The power status of the 
equipment is regularly checked and appropriate actions 
are taken once discovered. 

 
Figure 7.  Alarm sent via SMS 

The collaborative environment may deal with many 
devices. An auxiliary application dynamically redirects 
the collaborative environment agents to available devices. 
The smart device informs this auxiliary application about 
its status. If the auxiliary application is unavailable and if 
the smart device already is in use, the smart device is able 
to re-route the agent requests to neighbor equipments.  

VI. CONCLUSIONS 
This paper presents the evolution of an electrical drive 

that is initially controlled locally by a computer. Various 
components are added to permit a remote access. The 
online experiment is then integrated into collaborative 
environment. The concept of agents is used to permit the 
online experiment to work on the behalf of the user within 
the collaborative environment. The performed actions can 
be controlled when the user decides to save measurements 
at a given time or autonomously when sending an alarm. 
If the agent performing autonomous task is part of the 
server, the resulting tandem can be called a smart device. 
The requirements for turning online equipments into smart 
devices are then presented. An emphasis is placed on the 
communication side that should accommodate to many 
technologies and protocols. Finally an example depicts the 
interaction between a smart device and various client 
applications.  
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