
FROM ONLINE EXPERIMENTS TO SMART DEVICES

From Online Experiments to Smart Devices
Christophe Salzmann & Denis Gillet

École Polytechnique Fédérale de Lausanne, Switzerland

Abstract—Online experiments have been available for more
than a decade. The integration of online experiments into
collaborative environments is more recent. The wealth of
client applications/environments, the versatility of possible
interaction protocols/technologies and the needs for more
autonomous actions impel the evolution of online
experiments to the smart device concept. This paper reviews
the evolution of an electrical drive experiment and presents
the requirements for turning online experiments into smart
devices.

Index Terms—Agent, collaborative environment, online
experiment, smart device.

I. INTRODUCTION
Online experiments are typically used by brokers to

provide distant users with remote experimentation. For
example, the access to an online experiment during a live
demonstration in a classroom. Online experiments are
often used in control, robotic and mechatronic education
for illustrating theoretical principles and deployment
methodologies. The different control design and
implementation steps taught to students in control courses
(system identification, controller design, real-time control,
performance validation, etc.) can be efficiently carried out
remotely on mechatronic systems as they exhibit visually
observable dynamical behaviors.

Remote experimentation solutions are based on a client-
server approach where the server is connected to the
physical equipment and the client application is connected
to the server via the Internet. The user interface can be of
various forms but it is generally proposed through a web
browser. The aim of a remote experimentation solution is
to make the student interaction with the distant system as
close as possible to the actual work on the real equipment.
Collaborative environments are proposed to support the
distant user learning process. These environments
integrate various services to streamline the user
experience and to help the user environment
appropriation. To provide a tight integration of remote
equipments within collaborative environments, specific
care has to be taken regarding the interface, the provided
features and the communication protocol. This
customization leads to a very specific solution that is
difficult or impossible to integrate into another
collaborative environment. The concepts of smart devices
are used to expand the online experiment scheme such that
the proposed solution is adaptive, autonomous, as
envisioned in the Internet of Things realm.

This paper is organized as follows: the physical
equipment locally controlled is first presented in
section II. In section III, a communication component is
added to permit remote access. The integration of online
experiments into collaborative environments is presented

in Section IV. Section V presents the smart device concept
applied to online experiments and its requirements.
Section VI concludes by presenting hints about smart
device evolution.

II. PHYSICAL EQUIPMENT AND LOCAL ACCESS
The physical equipments remotely controlled are often

mechatronic devices with moving parts as they exhibit
visually observable dynamical behaviors. For example the
laboratory-scale electrical drive (Fig. 1) is used in many
textbooks and courses to illustrate automatic control
theory. This setup consists of a DC motor equipped with a
digital encoder. The motor drives a brass disk acting as the
load. The angular position is measured with a digital
encoder connected to the motor axle. Along the same axle,
an enlarged rotating disk permits an easy visualization of
the motion. This enlarged disk and the rotating load
motion are captured by a video camera. The whole
hardware has been designed in such a way that it is fully
controllable from the connected computer. Similarly, the
hardware state can be diagnosed from the connected
computer. For example, in addition to the required disk
position and speed measurements, diagnostic signals
informing about the power status can be read from the
connected computer. Likewise, additional actuators have
also been added. For example a second motor acting as a
generator is placed along the main motor axle to generate
a perturbation that can be controlled remotely by
switching the generator load. Also, the main power can be
switched on and off from the connected computer to save
energy when not used.

Figure 1. Laboratory-scale electrical drive

50 http://www.i-joe.org

FROM ONLINE EXPERIMENTS TO SMART DEVICES

Depending on its complexity and computational
resource requirements, the control of the equipment can
also be performed via an on-board micro-controller. The
former solution offers more flexibility than the latter.

The considered physical equipment is used by students
to apply the control theory learned during ex-cathedra
classes. For example, the experimentation protocol
consists in choosing the right set of parameters to position
the load or to impose a rotating speed according to some
specifications. The PID controller is implemented as a
real-time task that communicates with both the physical
equipment and the graphical user interface (GUI) [1].

With the help of the graphical user interface, the users
can experience the effect of the various controller
parameters and see their effects on the physical
equipment. Figure 2 shows the user interface of the
application that locally controls the laboratory-scale
electrical drive. It is written in LabVIEW [2]. The upper
part displays the acquired measurement in a scope area.
The lower part is intended for the user to modify the
controller parameters as well as the reference signal.

Figure 2. Local control of the electrical drive

III. FROM LOCAL TO REMOTE ACCESS
Providing remote access to physical equipments

controlled locally by a dedicated computer is fairly
straightforward assuming that the computer is connected
to the Internet. Depending on the required degree of
interaction between the distant user and the physical
equipment both turnkey and customized solutions can be
envisioned.

A. Turnkey solutions
Nowadays many turnkey solutions are proposed by

commercial applications. The quickest solution is the use
of applications that enable the sharing of a distant
computer screen (VNC, Remote Desktop, Timbuktu, etc.).
While easy to implement this solution generally suffers a
high bandwidth usage. Another drawback is that the user
cannot see the physical equipment. Visualizing the
controlled equipment is considered a key feature to
differentiate simulation from real experimentation. Also
directly accessing the remote server may grant too much

rights to the distant user, permitting him/her to act on
aspect he/she is not supposed to.

Another kind of turnkey solution relies on specific
applications that are able to generate a remote view of the
local GUI. This view is generally displayed in a web
browser. The server application can either generate a
dynamic web page or require specific client applications
(LabVIEW remote panel). Both solutions can be enabled
with only a few mouse clicks but suffer the same
visualization drawback as the screen sharing solution.
While a video stream coming from an IP camera may be
embedded to the web page containing the deported view,
the information synchronization between the sources of
information is added to the potential bandwidth problem.

B. Custom-made solutions
Custom-made solutions permit a finer control of all

aspects involved in remote experimentation. This at the
cost of additional developments to create both the client
application and to add the network communication layer
to the local application [3].

Various technologies can be used to implement the
client application. Web-based technologies (web 2.0, Java,
Flash, Silverlight, QuickTime, ActiveX, etc.) are the most
widely used since they are ubiquitous and often pre-
installed within the web browser.

Depending on the client application requirements, the
chosen technology should provide the following features:

• display GUI elements (button, etc.)
• ability to get user actions and events (mouse,

keyboard)
• support communication protocol (TCP, UDP, HTTP,

etc.)
• timing synchronization (threads, timers)

As of today Java is the most versatile option that
permits the finest control of the client application. A
solution that only uses standard web technologies (CSS,
Ajax) without the help of plug-ins is possible provided
that the web transmission protocol (HTTP/TCP) does not
constrain the envisioned communication. Java provides
the full control over the above features necessary to
implement an advanced remote experimentation client. It
especially permits to implement alternate transmission
protocol (UDP) and allows a tight synchronization
between the various flows of information (video, data,
parameter).

Figure 3 presents a java applet that enables to control
the distant laboratory-scale electrical drive. The provided
interface permits the user to change the various
parameters of the PID controller and to see its effects in
real-time via the oscilloscope area and the video feedback.

The main adjunctions to the distant application that
locally control the physical equipment (Fig. 2) are the
video acquisition and transmission layer that allows
remote clients to communicate with the online
experiment. With these additions the local application
becomes a server application. Additional requirements and
best practices are presented in [4].

iJOE – Volume 4, Special Issue 1: REV2008, July 2008 51

FROM ONLINE EXPERIMENTS TO SMART DEVICES

Figure 3. The client application implemented as a java applet

IV. WEB 2.0 SOCIAL SOFTWARE FOR COLLABORATIVE
LEARNING AND INTERACTION WITH ONLINE

EXPERIMENTS
The additional flexibility provided by remote

experimentations is highly appreciated and permits distant
users to manage the remote experimentation sessions at
their own pace and from their own location [5]. One
drawback is that the learning modalities often found on
campus should be emulated. Collaborative learning
support should be provided, as well as some forms of
tutoring and assistance. Collaborative environments such
as emersion [6] and elogbook [7] support the activities
with online experiments by providing additional services
such as shared spaces for saving measurements,
discussion forums, live support, etc. The online
experiments need to be specifically adapted to maximize
the benefits offered by collaborative environments. Not
only the client applications need to be adapted, but also
the server application. For example authentication is often
required by collaborative environments, thus the client
and/or the server applications must be adapted to support
authentication. Similarly, saving data in a shared space
requires specific protocols that may not be present
initially. When possible, some or all the required
adaptations could be implemented by a proxy application
that bridges both worlds. This translation is often done at
the cost of performances. This proxy application bridging
mechanism can be generalized as the concept of agent that
works on the behalf of users, or in the presented case on
the behalf of the online experiment server [8].

Figure 4 shows the remote experimentation agent
working on the behalf of both the user Chris and the
equipment RT-201 within the elogbook collaborative
environment. The measurements acquired with the help of
the agent (center of Fig. 4) are directly saved within the
shared space (right column of Fig. 4) and are visible for
the members (left column of Fig. 4) of the given activity
(top of Fig. 4). The agent has been granted the right to
directly save measurements in the shared space after it
authenticated using the provided elogbook mechanism.

The original online experiment does not know about the
elogbook, it is only aware of the elogbook agent. Using
the agent concept, the online experiment could be
interfaced by various collaborative environments but
would require a dedicated agent for each new

environment. To alleviate this restriction and to permit
“any” client to access the online experiment, all agents
should be hosted at the server side. While this is not
directly feasible since all agents are not known before-
hand, the structure to support multiple types of
connections, protocols, modes of operation and interfaces
in an autonomous and self-contained way should be
implemented in the server.

Figure 4. Remote experimentation agent in elogbook

A server connected to physical equipment with the
above capabilities and the ability to interact autonomously
with other machines is called a smart device. In the above
example the communication between the applet agent and
the elogbook is performed with the help of webservices.
When running in the standalone mode (Fig.3) the applet
communicates with the smart device via raw UDP blocks.

V. SMART DVICES
Smart devices can be described as devices that have

some autonomy to perform actions. Theses devices often
have sensors and/or actuators and support communication
with other devices. The interconnection of smart devices
and other intelligent objects sketches the Internet of
Things.

The Internet of Things is a metaphor that envisions the
connection of all existing objects for the universality of
communication processes, for the integration of any kind
of digital data and content, for the unique identification of
real or virtual objects and for architectures that provide the
communicative glue among these components [9].

Thomson [10] suggested that smart devices need some
or all of the following capabilities:

i) communication
ii) sensing and actuating
iii) reasoning and learning
iv) identity and kind
v) memory and status tracking

A. Requirements for turning online equipment into
smart devices

Physically, the considered smart device is made of the
adjunction of the controlling computer -the server-
connected to the physical equipment on one side and to
the Internet on the other side. The capabilities required for
smart devices controlling physical equipment are twofold.

The first set of requirements is related to the physical
equipment. The physical equipment should be identifiable
to define what kind of equipment is connected. Also the
equipment should be fully controllable and diagnostic-

52 http://www.i-joe.org

FROM ONLINE EXPERIMENTS TO SMART DEVICES

able by the controlling computer. Due to security reasons
the full controllability of the physical equipment may not
be exposed to the outside world. Controllability also
implies that it is always possible to place the equipment in
a known state. Other requirements such as reliability and
maintainability should also be considered.

The second set of requirements is related to the
interaction of the controlling computer and the outside
world. This interaction implies that first the computer is
connected to the Internet and capable of understanding
incoming requests and to reply to them. It should also be
capable of some autonomy to report for example alarms or
its status. Security and authentication must also be
provided. It should not be possible to temper with the
physical equipment from the outside world. This is also
true for the hosting computer and the engaged
communications. In the considered case, the server may
propose a graphical user interface to interact with the
server.

The communication requirements suggest that the
server is able to talk any low level protocols such as TCP
or UDP to get the requests and send replies, but also high
level protocols or technologies such as HTTP, XML,
REST, FTP, XML-RPC, WSDL, POP, MAIL, RSS, etc.
to understand the requests. It is definitely not possible to
implement all possible protocols but the structure to
handle new protocols should be in place to minimize the
development effort. The next section presents the chosen
set of protocols to be implemented and the rational behind
these choices.

B. Smart device example
The proposed smart device is an extension of the online

experimentation server described in Section II. Initially,
the sole task of the server was to control the physical
equipment locally. Then a communication component was
added to send measurements and to receive parameters
from a home-built application using the UDP protocol.
The access from a web browser required the writing of a
Java applet and the associated server modifications. The
integration of remote experimentations in collaborative
environment implied the adjunction of new functionalities
and new protocols and the use of the agent concepts. The
global management of the available resources was also
required to dynamically spread the load among the
available online equipments leading to additional
modifications at the server side.

The current server is a smart device with an evolving
structure that guarantees compatibility with existing
solutions while streamlining the addition of new ones. On
the physical equipment side, the server only exposes a
limited set of actions that are validated prior to its
application on the physical device. Similarly the server
only provides aggregated information regarding the
physical equipment to the outside world.

The former client applications can interact with the
smart device by sending UDP packets that contain
parameters for the implemented controller. As a reply,
client applications receive two UDP streams, one for the
video feed and one for the measurements feed.

The current collaborative environments (emersion and
elogbook) do not have specific interface to the smart
device. This interface is provided by the smart device in
the form of a Java applet. The smart device is also able to

handle the user credential to directly interact with the
collaborative environment. This interface can also be used
independently by web browsers without the need for a link
to the collaborative environment. The interface
functionalities will be adapted accordingly, for example
user will be able to save measurements only on the user
desktop and not in the collaborative environment shared
space.

In addition, the server features awareness information
to the outside world. These information covers, among
other information, the server status, connections statistics
and usage statistics. Client applications can get the above
awareness information through various channels. For
example by opening a raw TCP connection to the server.
Alternatively the client application can use a provided
web service using the XML-RPC protocol. An RSS feed
with the above information is also provided (Fig. 5).

Figure 5. Smart device status information via RSS Feed

Last but not least, it is possible to send an email to the
server to get the above information or to get for example
measurements (Fig. 6). Interfacing programs via email is
not new but has been forgotten over the years. However
email support provides a simple and unobtrusive interface
that is generally ubiquitously available [11].

The mechanism implemented for the awareness
information is also available for the other streams of
information (parameters, measurements and video).

Figure 6. Measurements sent via email

The above information exchange relies on a request-
answer mechanism. The smart device is also able to push
information to given recipients. In case of self-diagnosed
malfunctions the server can send an email and an SMS
(Fig. 7). A typical malfunction is the physical equipment

iJOE – Volume 4, Special Issue 1: REV2008, July 2008 53

FROM ONLINE EXPERIMENTS TO SMART DEVICES

main switch set to OFF. The power status of the
equipment is regularly checked and appropriate actions
are taken once discovered.

Figure 7. Alarm sent via SMS

The collaborative environment may deal with many
devices. An auxiliary application dynamically redirects
the collaborative environment agents to available devices.
The smart device informs this auxiliary application about
its status. If the auxiliary application is unavailable and if
the smart device already is in use, the smart device is able
to re-route the agent requests to neighbor equipments.

VI. CONCLUSIONS
This paper presents the evolution of an electrical drive

that is initially controlled locally by a computer. Various
components are added to permit a remote access. The
online experiment is then integrated into collaborative
environment. The concept of agents is used to permit the
online experiment to work on the behalf of the user within
the collaborative environment. The performed actions can
be controlled when the user decides to save measurements
at a given time or autonomously when sending an alarm.
If the agent performing autonomous task is part of the
server, the resulting tandem can be called a smart device.
The requirements for turning online equipments into smart
devices are then presented. An emphasis is placed on the
communication side that should accommodate to many
technologies and protocols. Finally an example depicts the
interaction between a smart device and various client
applications.

REFERENCES
[1] Salzmann, C.; Gillet, D. ; Longchamp, R. ; Bonvin, D.,

“Framework for Fast Real-Time Applications in Automatic
Control Education”, 4th IFAC Symposium on Advances in
Control Education, p. 345-350, 1997

[2] http://www.ni.com/labview/
[3] Salzmann, C.; Gillet, D. ; Huguenin, P., “Introduction to Real-

time Control using LabVIEW with an Application to Distance
Learning“, International Journal of Engineering Education,
vol. 16, num. 3, 1999, p. 255-272

[4] Salzmann, C., Gillet, D., “Challenges in Remote Laboratory
Sustainability“, International Conference on Engineering
Education, ICEE 2007, Coimbra - Portugal, 3-7 September
2007.

[5] Salzmann C., D. Gillet, P. Scott, and K. Quick, “Remote lab:
Online Support and Awareness Analysis”, 17th IFAC World
Congress, Seoul, Korea, July 6-11, 2008.

[6] Nguyen Ngoc, A. V. , Y. Rekik, and D. Gillet. “A framework
for sustaining the continuity of interaction in Web-based
learning environment for engineering education”, World
Conference on Educational Multimedia, Hypermedia &
Telecommunications ED-MEDIA 2005.

[7] http://elogbook.epfl.ch
[8] Salzmann C., C.M. Yu, S. El Helou, and D. Gillet, “Live

Interaction in Social Software with Application in
Collaborative Learning”, 3nd International Conference on
Interactive Mobile and Computer Aided Learning, Amman,
Jordan, April 16-18, 2008.

[9] Federal Ministry of Economics and Technology. 2007.
European policy outlook RFID, draft version: Working
document for the expert conference “RFID: Towards the
Internet of Things”. June 2007.

[10] Thompson, C. W. 2005. Smart devices and soft controllers.
IEEE Internet Computing, vol. 9, issue 1, Jan.-Feb. 2005, pp.
82-85.

[11] D. Gillet, C.M. Yu, S. El Helou, A. Madina Berastegui, Ch.
Salzmann, and Y. Rekik, “Tackling Acceptability Issues in
Communities of Practice by Providing Lightweight Email-
based Interface to the eLogbook, a Web 2.0 Collaborative
Activity and Asset Management System”, 2nd European
Conference on Technology Enhanced Learning,�Crete,
Greece, September 17-20, 2007.

AUTHORS
Ch. Salzmann is with the École Polytechnique

Fédérale de Lausanne, Switzerland (e-mail:
christophe.salzmann@epfl.ch).

D. Gillet is with the École Polytechnique Fédérale de
Lausanne, Switzerland (e-mail: denis.gillet@epfl.ch).

This article was modified from a presentation at the REV2008
conference in Düsseldorf, Germany, June 2008. nuscript received 1 July
2008.

54 http://www.i-joe.org

