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Abstract—The mismatch of task scheduling results in rapid 
network energy consumption during data transmission in 
wireless sensor networks. To address this issue, the paper 
proposed an Energy-consumption Optimization-oriented 
Task Scheduling Algorithm (EOTS algorithm) which for-
mally described the overall power dissipation in the network 
system. On this basis, a network model was built up such 
that both the idle energy consumption in sensor nodes and 
energy consumption during the execution of tasks were 
taken into account, with which the whole task was effective-
ly decomposed into sub-task sequences. They underwent 
simulated annealing and iterative refinement, with the in-
tention of improving sensor nodes’ utilization rate, reducing 
local idle energy cost, as well as cutting down the overall 
energy consumption accordingly. The experiment result 
shows that under the environment of multi-task operation, 
from the perspective of energy cost optimization, the pro-
posed scheduling strategy recorded an increase of 21.24% 
compared with the FIFO algorithm, and an increase of 
16.77% in comparison to the EMRSA algorithm; while in 
light of network lifetimes, the EOTS algorithm surpassed 
the ECTA algorithm by a gain of 19.21%. Therefore, the 
effectiveness of the proposed EOTS algorithm is verified. 

Index Terms—wireless sensor network; energy consumption 
model; task scheduling  

I. INTRODUCTION 
Wireless sensor networks are a new-type network sys-

tem linked by tens of thousands of self-organized multi-
hop sensor nodes. It unifies organically the information 
world and the physical world, and realizes such operations 
as data sampling, data computation, data communication, 
and data storage [1-2]. Along with rapid development of 
information technology, the application of wireless sensor 
networks has been broadened to a variety of engineering 
fields encompassing military and national defense, envi-
ronmental monitoring, rehabilitation and disaster response, 
smart home, sanitary and medicine, agricultural production, 
as well as transportation [3-4]. 

The fast-pace advancement of science and information 
technology drives data sampling in wireless sensor net-
works to be more oriented, specific, and precise, which 
poses greater challenges to highly-efficient management 
of energy consumption in the system of wireless sensor 
networks [5]. In this connection, how to reduce energy 
cost in the network system has drawn increasing attention. 
During data transmission, energy-efficient-based schedul-

ing has become the priority of task scheduling in the wire-
less sensor networks. Compared to conventional task 
scheduling that pursues minimum makes pan, energy-
efficient-based scheduling features the main objective of a 
best-effort reduction of the times and time for data re-
sources to exploit, so that the utilization rate of data re-
sources increases at the same time when overall perfor-
mance and energy consumption keep balance [8-9]. With-
out comprehensive consideration of overall data load rate 
and energy consumption utilization rate, tasks based on 
traditional load balance scheduling strategy tend to be 
allocated to overmuch sensor nodes, thus leading to ener-
gy dissipation. By cluster reconfiguration and data place-
ment, Maheshwari et al. [10] proposed an algorithm that 
dynamically reconfigured cluster by scaling up (down) the 
number of nodes in the sensor based on current workload. 
Pietri et al [11] established several models of data utiliza-
tion rate at the state of overall load balance, and used the 
feedback theory to adjust and compute utility of sensor 
nodes, thus maintaining overall load balance at the same 
time when the total energy consumption is lowered. 

It is also an efficacy energy-saving approach to reduc-
ing energy consumption of sensor nodes based on charac-
teristics of currently operating tasks. For instance, the 
clustering structure was used in Paper [12] to complete 
dynamic transformation between clusters, so that the en-
ergy cost of sensor nodes was lowered until the overall 
energy achieved a balance; with virtual technology in 
wireless sensor networks, Paper [13] integrated numerous 
clusters into the same network system, and turned off idle 
nodes for the sake of energy saving. In addition, task load 
based scheduling strategy is another way to achieve ener-
gy optimal management. According to computation of 
node performance and task attributes, Mashayekhy et al. 
Paper [14] combined energy cost factors with task sched-
uling mechanism, and put forward the energy-
consumption sensory scheduling model accordingly. Un-
der the constraints of service level agreements, the model 
allocated the optimal execution node for each task based 
on greedy algorithm in a way that realized minimization 
of overall energy cost. Ge et al. Paper [15] proposed a 
computation model which took into account execution 
performance and overall energy consumption perfor-
mance. After acquiring system performance and task pa-
rameters, this model used scheduling strategy to achieve 
balance between overall performance and energy con-
sumption. Guzek et al. [16] transformed the issue of task 
scheduling in distributed systems into a matter of perfor-
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mance optimization under the constraints of multiple ob-
jectives. 

In general, the energy consumption in network systems 
comprises idle energy dissipation in sensor nodes and 
energy consumption during the execution of tasks [17-19]. 
The present studies associated with energy optimal man-
agement deal separately with idle energy optimization and 
energy optimization during execution time, lacking an 
integral consideration of both, however. To address the 
issue, a multi-task energy consumption model was built up 
in combination with characteristics of wireless sensor 
network application and task scheduling algorithm. The 
energy-consumption optimization-oriented task schedul-
ing algorithm was proposed accordingly, based on which 
the whole task was effectively decomposed into sub-task 
sequences. They underwent simulated annealing and itera-
tive refinement for energy saving, thus cutting down over-
all energy cost. 

II. ENERY CONSUMPTION MODEL 

A. Task formalization description 
First of all, taskList and freeList concerning task sched-

uling in wireless sensor networks were described at any 
given time t as (Job0, Job1 ,..., Jobk) and (node0, node1 ,..., 
noden), respectively; the task list constituted by a total of 
K tasks was expressed as (task0, task1 ,..., taskm), where the 
number of idle resources was n, the number of tasks m, 
and m!n by hypothesis. Considering that frame, the 
smallest unit for data application, was independent from 
each other, which meant that every task corresponded to a 
frame, the aforementioned task list hence could be repre-
sented as (frame0, frame1 ,..., framem), and a frame was 
regarded in uniformity as a task in the paper. The three-
level scheduling strategy was commonly employed in the 
cloud data system. Specifically, a stochastic scheduling 
sequence was selected out first; then, a proper Job was 
chosen from the sequence; finally, a proper Task was 
picked out of the Job before it was included in the 
taskSchList, waiting to be allocated to the corresponding 
data node. As the first two levels exerted no influence on 
energy consumption of the task, the third level was direct-
ly modelled for analysis. In this connection, after schedul-
ing, each of the data nodes maintained an execution list. 
Assuming that the current state of all the nodes was 
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B. Task energy consumption modeling 
After scheduling, the taski in the execution list was dif-

ferent from the one in taskList. Therefore, when the task 
was submitted and running, the time list for each data 
node to finish the tasks was obtained as 
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First, node i was taken as an example to describe ener-
gy consumption per node. Ti denoted the total time for 
node i to operate, as shown in Equation (3). 
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The time for all nodes to operate could be calculated 
from Equation (3). Equation (4) was the process of com-
puting Tmax, where max() functioned as a way to return to 
the maximum parameter in the list.  

0 1max( , ,..., )max nT T T T=   (4) 
Equation (5) described the operation energy consump-

tion Ei of node i, where Eworki denoted the energy cost for 
node i to complete all the tasks in task-
List[taskir,taskir+1,…,task(i+1)r-1], which was determined by both 
the power of node i and the task runtime. Eidlei, the idle en-
ergy consumption demanded for the node during the 
scheduling, was affected by the idle power and slack time 
of the node. The slack time resulting from system instabil-
ity was ignored here, and it was assumed that node i was 
at idle when and only when it completed all the tasks in 
taskList. Equation (6) and Equation (7) separately served as 
the computation of the aforementioned two kinds of energy 
consumption.  
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The energy consumption for node i to finish its task was 
obtained when Equation (6) and Equation (7) were substi-
tuted into Equation (5), as shown in Equation (8).  
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Based on the energy consumption computation model 
of node i, Equation (9) was the computation for cluster 
energy consumption in the cluster list (node0, node1, ..., 
noden) which incorporated idle energy consumption in 
sensor nodes and energy consumption during the execu-
tion of tasks. 
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Equation (3) was substituted into Equation (9), and the 
final energy consumption computation model of cluster 
nodes was obtained as 
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(10) 
As could be seen from Equation (10), the energy con-

sumption for a set of data tasks to be scheduled and run 
comprised two parts. The first part concerned node power, 
idle power, and the runtime of one task in the data nodes. 
During model analysis, it was assumed that the node pow-
er and idle power were constant, which meant that the 
difference between them was constant. The second part 
was associated with idle power of a single node and the 
runtime of all the tasks in the nodes. The time required for 
the same node to process all the tasks was closely related 
to task numbers. The task scheduling strategy affected the 
power dissipation of a task by controlling the target node 
that runs the task. 

According to EMRSA task scheduling algorithm, for 
each of the task in the taskSchList, the scheduling strategy 
based on a priori value of energy cost guarantees that the 
current task is distributed to the node with least energy 
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dissipated. However, in terms of the overall task, one node 
may correspond to more than one task to generate the 
minimum power consumption. Therefore, for a certain 
node, if the largest energy decrement is generated when 
the node processes another task instead of the current one, 
the present seemingly optimal task scheduling strategy 
impairs the overall optimal energy-saving configuration as 
a comparison. Given that, in order to achieve energy con-
sumption optimization, it is necessary to upgrade the task 
scheduling strategy by expanding scheduling scopes. 

III. EOTS ALGORITHM BASED ON SIMULATED 
ANNEALING 

A. Initialization 
Simulated annealing algorithm [17] is the expansion of 

local optimization dynamic programming. In light of en-
ergy-consumption optimization-oriented task scheduling, 
the process of scheduling each task is described as a simi-
lar sub problem for the sake of local energy consumption 
optimization. Simulated annealing algorithm was referred 
to in initializing taskSchList, and the corresponding steps 
were shown as follows: 
1) Solution space in task scheduling 

For taskList (task0, task1, ... ,taskm-1) and freeList 
(node0, node1, ... , noden-1), the solution space in task 
scheduling is equivalent to a mapping scheduling se-
quence between m tasks and n nodes, namely 
taskSchList(task0i,…,task(m-1)j), where taskSchList is the 
task scheduling sequence, taskij means to execute task i in 
node j, and 0" i "m-1!0" j "n-1! 
2) Set up target function 

According to Equation (10), the target function for task 
scheduling was expressed as 
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3) The principle of new solution generation 
The principle of new solution generation exerts influ-

ence on the efficiency of pursuing for optimal values, 
which should hence be as simple as possible in order to 
reduce calculation amounts. The way to generate new 
scheduling sequences in the paper is swapping task sched-
uling nodes within the range of neighborhood factor N.  
4) The acceptance criteria for new solutions  

In the simulated annealing algorithm, the acceptance 
criterion for new solutions is: when the value of the target 
function for a new solution is smaller than the one for the 
current solution, the new solution is directly accepted; or 
else the new solution is only accepted under certain condi-
tions. MeTropolis acceptance criteria remain unchanged 
here, and Equation (12) is the conditions under which the 
new solution is accepted.  

/( 0) ( (0,1))f Tf or e random!"" < >   (12) 

B. Process of task scheduling 
According to background description of task schedul-

ing, usually m>=n (m denotes the number of tasks, and n 
the number of nodes). Therefore, for each idle resource 

node, several rounds of task scheduling are demanded in 
distributing m tasks. The process of task scheduling is 
shown as follows: 

1. Initialize freeList node0-noden-1, taskList task0-taskm-
1, simulated annealing parameter T, and neighbor-
hood factor N! 

2. Calculate the energy consumption of each task in the 
current node nodei according to (nodePoweri-
nodeIdle Poweri)*tj, and add the minimum calculated 
value into taskSchList! 

3. calculate the overall power dissipation for all the 
tasks in the present taskSchList according to target 
function (11).  

4. Swap the current task for its adjacent task in the 
taskSchList within the range of neighborhood factor 
N according to the principle of new solution genera-
tion, and generate a new task scheduling sequence. 

5. Calculate the overall power dissipation for the newS-
chList according to target function (11). 

6. Calculate the D-value between the overall energy 
cost in 5) and the one in 3), and compare the D-value 
with the acceptance criteria of the new solution, On 
this basis, determine whether the newSchList is quali-
fied to replace the original one or not.  

7. Refresh taskList to see whether there is any unsched-
uled task; if not, the process of task scheduling stops; 
if there is, the process of task scheduling continues 
from 1).  

 

The pseudocode of the simulated annealing based 
EOTS strategy is shown as follows. The input of the algo-
rithm contains freeList,  taskList, annealing control pa-
rameter T, and solution neighborhood space parameter N. 
T is used to calculate the acceptance probability for the 
new solutions upon its generation; and N to control the 
neighborhood space that the new solutions generate. The 
output is taskSchList! 
Algorithm 
1:initialize: taskSchList, newList, searchIndex=0 
2: forall freei freeList do 
3:    forall taskj taskList do 
4:        energyij= poweri* tj 
5:        energyMatrix.add(energyij) 
6:    end for 
7:end for 
8:while taskList is not empty do 
9:   forall freei freeList do 
10: taskIndex= energyMatrix.getMinValueIndex(freei) 
11:    taskj!getTask (taskList, taskIndex) 
12:    taskSchList.add(taskj) 
13: taskEnergy0=calculateTaskListEnergy(energyMatrix, 
freeList, taskSchList) 
14:    for(searchIndex<N) do 
15:       newList!swapTaskInScheList () 
16: taskEnergy1=calculateTaskListEnergy(energyMatrix, 
freeList, newSchList) 
17:       ! p = taskEnergy1 - taskEnergy0 
18:       if (!p<0 or / (0,1)p Te random!" > ) then 
19:         taskSchList.update(newList) 
20:         break 
21:       end if  
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22:       searchIndex++ 
23:    end for 
24:  end for  
25:  taskList.remove(taskj) 
26: return taskSchList 

IV. EXPERIMENT ANALYSIS 
To verify the effectiveness of the EOTS strategy, the 

paper adopted the Inspur TS10000 high-performance 
computing cluster environment to build up a cloud data 
system. Blender 2.69, the widely used open-source cross-
platform 3D mapping and data software, served as the 
data engine. Test data was selected from some segments 
of the movie “Big Buck Bunny”, the second animated 
movie of copyleft licenses in Blender Foundation. The 
energy consumption test instrument was Watts’up" with 
nominal voltage of 250V and nominal current of 15A. 

A. Energy consumption performance analysis 
The FIFO algorithm and the EMRSA[14] algorithm were 

chosen for comparison and analysis of energy consump-
tion performance. To be free from data unit corruption, the 
Max-Min method and the Z-score method were used to 
normalize experiment results. Table 1 is the parameter 
initialization for the experiment in this section and for the 
EOTS strategy, where Node Number denoted node num-
bers, Job Number the number of jobs, Task Number the 
number of tasks, namely the total frame numbers, N the 
search space for the new solution based on the EOTS 
strategy, and T the simulated annealing factor.  

Figure 1 is the comparison of energy consumption per-
formance among FIFO, ESERSA, and EOTS. The energy 
consumption based on each algorithm was normalized 
separately. The vertical axis represented the corresponding 
normalization values. The larger the value is, the larger 
the energy consumption is, and the lower the network 
performance is. The horizontal axis was task numbers.  

As could be seen from Figure 1, FIFO performed worst, 
and EOTS performed best in that EOTS was 21.24% 
higher than FIFO, and 16.77% higher than EMRSA when 
dealing with multiple tasks. The reason for the worst per-
formance of FIFO in tackling different task numbers is 
that it ignores the energy consumption factors of tasks. 
The EMRSA algorithm reflects the idea of the greedy 
algorithm, and minimizes energy cost of tasks on the 
premise of meeting users’ time requirements. However, 
the mere consideration of optimal energy conservation for 
current tasks may easily put this algorithm in the trouble 
of local optimization. With the help of simulated anneal-
ing thought, the EOTS strategy targets at the overall ener-
gy optimization instead of the limited local optimization, 
thus it performs better than the EMRSA algorithm.  

B. Analysis of task scale expansion 
During the experiment, despite the improvement of en-

ergy consumption performance, the EOTS strategy wit-
nesses a prompt decrease of runtime performance at the 
same time. To effectively develop advantages and remove 
disadvantages of different algorithms under different con-
straints, the paper compared and analyzed the relative 
performance improvement between the EMRSA algo-
rithm and the EOTS strategy under various conditions. 
Corresponding formulas were shown in Equation (13) and 
Equation (14), where “energy” denoted the energy con-

sumption based on the current algorithm, and “time” re-
ferred to the algorithm’s runtime.  

*100%EMRSA SAEO

EMRSA

energy energy
energy

energy
!

=   (13) 
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time time
time

time
!

=   (14) 

As the FIFO algorithm excludes energy consumption 
factors such that its energy consumption performance falls 
further behind, it is not necessary to compare it with the 
other two algorithms, as what the paper does. Figure 2 is 
the comparison between the EMRSA algorithm and the 
EOTS strategy in terms of relative performance enhance-
ment.  

In Figure 2, the vertical axis represents the normalized 
value of performance improvement. The larger the nor-
malized value is, the more obviously the corresponding 
performance is improved. The horizontal axis represents 
task numbers. As can be seen from the figure, in compari-
son with the EMRSA algorithm, the percentage of energy  

TABLE I.   
PARAMETER INITIALIZATION 

parameter name Parameter value 
Node Number 40 
Job Number 6 
Task Number 100-1000 

N 2 
T 10000 
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Figure 1.  Energy consumption for multiple tasks 

 
Figure 2.  Comparison of the relative performance improvement be-

tween the EMRSA algorithm and the EOTS strategy 
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consumption improvement for the EOTS strategy drops 
rapidly along with the increasing task numbers, while the 
proportion of runtime growth gradually rises as the task 
numbers are enlarged. Two curves intersect at a certain 
point at between 200 and 300. Thus, when the task num-
ber is below 200, the rising amplitude of performance 
improvement based on the EOTS strategy exceeds the 
declining amplitude of runtime performance, which means 
that the EOTS strategy surpasses the EMRSA algorithm 
on the whole; by contrast, when the task number is above 
300, the rising amplitude of performance improvement 
based on the EOTS strategy is shorter than the declining 
amplitude of runtime performance, which means that the 
EOTS strategy generally underperforms the EMRSA 
algorithm. The above results show that the optimal sched-
uled task number for the EOTS strategy to improve energy 
consumption performance is between 200 and 300. 

C. Comparison of redundant node numbers and the 
netorks lifetime 

On simulation platforms of different scales, the paper 
compares both the number of redundant nodes and the 
change of coverage rates among the EOTS algorithm, the 
SCA algorithm in Paper [20], and the EPDM algorithm in 
Paper [21], as shown in Figure 3-5. 

From figure 3 to figure 5 show separately the compari-
son between redundant node numbers and the change of 
coverage rates under the influence of diversified network 
sizes and different parameters. Figure 3 is the changing 
curves of sensor node numbers and working node num-
bers based on the EOTS algorithm, the SCA algorithm, 
and the EPDM algorithm, respectively, within the 
100*100m2 simulation domain. As can be seen, the EOTS 
algorithm requires a relatively small sum of working 
nodes under the action of disparate parameters; while the 
EPDM algorithm demands for a large number. The reason 
for this phenomenon is that the sensor nodes together with 
their neighboring nodes cover an even larger area by com-
parison, while the rest of the algorithms realize effective 
coverage by increasing sensor node numbers. Figure 4 and 
Figure 5 are the comparison between redundant node 
numbers under different coverage rates on the simulation 
platform with a size 300*300m2. As can be seen, the more 
the working node numbers are, the less the sensor nodes 
are required, but only if meeting the requirements of cer-
tain coverage rates. 

Figure 6 and Figure 7 are the comparison between net-
work lifetimes and between algorithm runtimes concern-
ing the EOTS algorithm and the ETCA algorithm, respec-
tively. As can be seen from Figure 6, at the initial time, 
the two algorithms share a basically equal network life-
time; as the sensor node increases in number, all the 
curves representing network lifetime rise. However, with 
the adoption of nonlinear consistent coverage mode, the 
ECTA algorithm witnesses higher energy consumption 
than the EOTS algorithm during monitoring target nodes. 
When there are 180 sensor nodes, both the network life-
times based on the two algorithms level off. The average 
network lifetime based on the EOTS algorithm was 
19.21% higher than the one based on the ECTA algorithm. 
Figure 7 is the comparison between the EOTS’s runtime 
and the ETCA’s runtime with different numbers of sensor 
nodes. Considering that the chain-table storage is the en-
ergy storage mode for sensor nodes based on the ECTA 
algorithm, the high-energy nodes in the whole chain table 

are traversed accordingly in access to higher privilege 
such that the target nodes are covered. In doing so, the 
ECTA algorithm is less complex than the EOTS algo-
rithm. Therefore, the EOTS’s runtime exceeds the 
ETCA’s runtime. 
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Figure 3.  100*100m2, Comparison between the number of sensor 

nodes and working nodes based on different algorithms 
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Figure 4.  300*300m2, Comparison between the number of sensor 

nodes and working nodes based on the EOTS algorithm with different 
coverage rates 
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Figure 5.  300*300m2, Comparison between dormancy redundant node 

numbers and redundant node numbers based on the EOTS algorithm 
with different coverage rates 
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Figure 6.  200*200m2, Comparison between network lifetimes based 

on the EOTS algorithm and the ETCA algorithm 
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Figure 7.  Comparison between the EOTS’s runtime and the ETCA’s 

runtime 

V. CONCLUSION 
In addressing the issue of energy consumption optimi-

zation for data systems in wireless sensor networks, the 
paper took advantage of the parallel characteristic between 
frames in data application, and comprehensively consid-
ered energy consumption optimization during slack time 
and execution time. On this basis, the paper established an 
energy consumption model, based on which the EOTS 
algorithm was proposed with the thought of simulation 
annealing. Through local energy consumption optimiza-
tion, the goal of overall energy consumption optimization 
was achieved. The paper validated the strategy experimen-
tally, where the environment of multiple tasks was provid-
ed. The result shows that from the perspective of energy 
cost optimization, the proposed scheduling strategy rec-
ords an increase of 21.24% compared with the FIFO algo-
rithm, and an increase of 16.77% in comparison to the 
EMRSA algorithm; while in light of network lifetimes, the 
EOTS algorithm surpasses the ECTA algorithm by a gain 
of 19.21%. In this way, the proposed EOTS algorithm is 
proved with favorable stability and expandability. 
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