
PAPER
FROM GEIGER-COUNTERS TO FILE SYSTEMS: REMOTE HARDWARE ACCESS FOR THE OPERATING SYSTEMS COURSE

From Geiger-Counters to File Systems:
Remote Hardware Access for the Operating

Systems Course
http://dx.doi.org/10.3991/ijoe.v12i09.6102

J. Wolfer, and W. J. Keeler

Indiana University South Bend, South Bend, USA

Abstract—Operating systems interface between hardware
and the user, random numbers are useful for security and
simulation, and file systems form the program access to
them in a modern operating system. Blending these items
into a remotely accessed infrastructure forms the basis for
supporting operating systems projects. This work describes
the hardware, software, and communication infrastructure
to support student projects by sharing remote hardware to
acquire background radiations events with a Geiger coun-
ter, transforming those events into random numbers, and
providing those numbers through a custom file system.
Collectively, the hardware and software provide an inex-
pensive remote laboratory experience for computing stu-
dents.

Index Terms—operating systems; random numbers; file
systems; pedagogy; remote laboratory; Geiger Counter;
Raspberry Pi

I. INTRODUCTION
Remote access to scarce or potentially dangerous labor-

atory experiences is an emerging trend in engineering
education. This has the effect of multiplying the equip-
ment investment, and in the case of education, providing
laboratory access to a larger contingent of students. This,
in turn, can be crucial when attempting to bootstrap criti-
cal engineering education infrastructure with limited re-
sources [1,2]. In addition to the obvious advantage of
enhanced investment, remote resource access also brings a
level of convenience to the user, laboratories may be
available at a place and time of the student’s choosing, for
example.

While remote engineering laboratories are emerging
due, in part, to the rich internet communication infrastruc-
ture, the remote model was adopted in the earliest days of
modern computing. Exploiting the time-sharing paradigm
at the operating system level many computers allowed
“modem-access” to share resource. The UNIX time-
sharing system may be the most recognizable [3] example
of such a system. That having been said, it is not as com-
mon for computer science students to have shared, low-
level, access to hardware components as is becoming
prevalent in other areas of engineering. Since an operating
system must interface with hardware we wished to pro-
vide a moderately low-level hardware experience for our
students in the Operating Systems class. To that end we
developed a shared laboratory experience using a consum-
er-grade Geiger counter to form the basis for students to
develop software to synthesize random numbers from

background radiation events and to make those numbers
available by developing a custom file system in user
space.

The balance of this report will provide a background for
remote laboratories, describe the operating systems class,
the Geiger counter hardware, random numbers acquired,
and the file system project.

II. BACKGROUND
When designing remote laboratory experiences it is im-

portant to consider local objectives in the context of those
articulated in the broader intellectual community. For
example, Restivo, et. al, summarize a variety of important
objectives in the context of tactile experiences in virtual
laboratories. These objectives include learner-centered
items such as meeting the needs for diverse learning
styles, provide experimental results to the students for
subsequent analysis, to correlate laboratory results with
theoretical concepts, and to provide a basis for lifelong
learning [4].

Two additional, important, considerations emerge when
considering design and deployment of both the remote
laboratory and the student projects designed around it.
Those are the combination of so-called “soft skills” and
the elusive student motivation. While not directly address-
ing pedagogy, Edwards, Tovar, and Soto make the obser-
vation that employers expect students to have skills be-
yond the technical, including teamwork, leadership, and
the ability to communicate in written and oral form [5].

In a similar vein, Settle and Sedlak report the results of
a survey designed to ascertain faculty attitudes toward
computing student motivation quantitatively. Their analy-
sis indicated that the majority of computing educators
perceive motivation “to be important in all learning situa-
tions, but particularly…in courses with significant obsta-
cles, and in particular areas of computing, including theo-
retical courses [6].

To meet these objectives engineers and educators have
pursued a variety of approaches including team projects,
flipped classrooms, virtual and remote laboratories, and
other implementations of active learning. For example,
Mason, Shurman, and Cook did a careful comparison of a
senior engineering course in traditional and inverted, or
flipped, formats. They report that while it took students up
to four weeks to adapt to the inverted classroom, the ulti-
mate outcomes were similar or better than that for the
traditional classroom [7].

26 http://www.i-joe.org

PAPER
FROM GEIGER-COUNTERS TO FILE SYSTEMS: REMOTE HARDWARE ACCESS FOR THE OPERATING SYSTEMS COURSE

Likewise, Kyle, et al., show the design of a project-
based bioinstrumentation course [8]. Students were to
design, test, and implement biomedical signal measure-
ment apparatus. They report that this approach generates
“highly exciting instructional platforms for both teachers
and students.”

There are examples in the computing domain as well
[9-12]. For example, Arbelaitz, Martin, and Muguerza
report good results for an active learning approach to
computer architecture [12]. Using a problem-based learn-
ing format requiring approximately sixty hours to com-
plete, they reported that student learning was positively
impacted. They also observe that “the students prefer to
learn through carrying out a real project because they feel
it provides them with more motivation to learn.” Similar-
ly, Uhsadel, et al., use teams of two to develop a public-
key cryptography application using a combination of
hardware and software. The students define the tradeoff
between the hardware and software components, thus
providing a platform for using both hard- and soft-skills in
their implementation [13].

Consistent with these efforts to enhance motivation and
learning, we approached the Operating Systems class at
our institution with a series of sustained mini-projects,
culminating in the system described in this report. The
hardware and software infrastructure described here was
first demonstrated at the REV 2016 conference, and was
developed to support the final project as an active-
learning, team oriented, exercise for the Computer Science
Operating Systems class [14].

III. OPERATING SYSTEMS
Like others [15], the Operating Systems course as

taught at our institution combines the study of operational
principles with significant hands-on implementation. It is
considered a capstone course, and is offered near the end
of their undergraduate program, typically the end of their
senior year. Classroom topics include both operating sys-
tems principles and hands-on implementation. Topics
include general system architecture, interrupt and clock
structures, system calls, inter-process communication,
process scheduling and management, memory organiza-
tion and management, file systems, device interfaces and
drivers, and contemporary security issues.

In addition to the topical lectures described above, the
course includes a series of mini-projects to be developed
and implemented. Examples include probing the operating
system kernel for debugging information, modifying the
process scheduling algorithms, and developing file sys-
tems and/or device drivers. These are accomplished using
a combination of operating systems such as MINIX and
Linux.

As a capstone class it is assumed that, in addition to the
technical content, the class will consolidate their analytical
abilities with appropriate soft-skills. To facilitate the soft-
skill integration into the final project students are divided
into teams of four or five. Each team is self-organizing,
dividing the work assignments as they see fit, and report-
ing progress weekly to the instructor. In addition, some
class time is allocated to team meetings where the instruc-
tor can observe and interact with the team to both assess
progress and advise where necessary.

IV. PROJECT DESCRIPTION
One important aspect of this class is giving students ex-

perience with both device interfaces and file system level
access to device information. Typically a file system pro-
vides programs, through the common read and write sys-
tem calls for example, access to bytes of data stored on an
external medium. For example, reading from a disk drive.
That concept is abstracted in UNIX-based systems to
include reading from devices acting as files. For example,
reading from stdin, the standard input device (keyboard),
or writing to /dev/null as a data sink. For this project stu-
dents develop a system that, when read, provides random
numbers synthesized from Geiger counter events. This
requires them to interact with two ends of the acquisition
subsystem; background data acquisition (synthesizing
random numbers from Geiger counter events) and the file
system interface.

The choice of physically-based random number genera-
tion is based on the concept that real-life projects are mo-
tivating for most students. Random numbers are vital for
both security and simulation. Our modern cryptographic
systems depend on them. That having been said, many
random number libraries provide algorithmically pro-
duced, pseudorandom, numbers. These can be sensitive to
initial condition, and even risky in situations requiring
security [16]. Likewise, many simulations rely on random
numbers and can be affected by the quality of those num-
bers [17].

There are a variety of physically-based random number
generators available, ranging from electrical and thermal
noise to radiation events. A survey of these, as well as
pseudo-random number generators, can be found in [18].
We chose to use a Geiger counter since it is visual (an
LED glows for each event) so students could visually
correlate what was happening in their programs with the
hardware output.

V. HARDWARE

A. Cluster Overview
Once the students acquire Geiger counter event

timestamps and synthesize random numbers from them,
they then develop a file system in user space (FUSE) to
allow program access to those numbers

The hardware supporting this effort has been developed
across two generations of Raspberry Pi computers. Initial-
ly we augmented a previously designed cluster developed
to illustrate supercomputing principles [19-21] with a
Geiger counter interface, networking software, and addi-
tional compute capability. This cluster is shown in Fig. 1.
Designed primarily to support pedagogy in the high-
performance computing class, the cluster consisted of four
Raspberry Pi computers [22] and an Nvidia Jetson TK1
[23] which includes a quad-core cpu coupled to 192 core
CUDA card. The TK1 was not deployed for this project,
but the cluster was augmented with two additional Rasp-
berry Pi computers, for a total of six units. That configura-
tion supported the initial deployment for the Operating
Systems class, supporting a total of thirty-one students.

Since this system was originally deployed, upgraded
Raspberry Pi computers have become available. Conse-
quently, the system has been reduced in size, but upgraded
with new capabilities as described below. The originally

iJOE ‒ Volume 12, Issue 9, 2016 27

PAPER
FROM GEIGER-COUNTERS TO FILE SYSTEMS: REMOTE HARDWARE ACCESS FOR THE OPERATING SYSTEMS COURSE

deployed system with Geiger counter interface is shown in
Fig. 1, the enhanced system is shown in Fig. 2.

B. Raspberry Pi
The Raspberry Pi (Fig. 3) has become a popular, credit-

card, sized computer system capable of supporting a varie-
ty of operating systems. The original model used for this
project was the “B+” model, featuring:
• Broadcom BCM2835 ARM CPU, 700 Mhz.
• 512 MB RAM
• 10/100 Mbps Ethernet
• 16 MB micro SD card acting as a disk drive
• 4 USB 2 ports, audio in/out, composite video, and

HDMI outputs.

In addition, the Raspberry Pi shares capabilities found
in other embedded systems. Specifically, the modules
expose a variety of General Purpose IO (GPIO) pins ena-
bling interfacing to the physical world, including to the
Geiger counter used here.

The upgraded Raspberry Pi, while identical in form-
factor, quadruples the number of enhanced CPU’s and
increases the baseline clock speed and memory. Specifi-
cally, each model 2 includes
• A 900MHz quad-core ARM Cortex-A7 CPU
• 1GB RAM

C. Geiger Counter and Interface
The Geiger Counter module forming the basis for ran-

dom numbers in this project is the Sparkfun SEN-11345
[24] is shown in Fig. 4. While this unit is capable of
providing data through a USB port, we elected to provide
an interface directly from the buffered output from the
GM tube to GPIO inputs on the Raspberry Pis. This sup-
ports the students by providing an environment for low-
level interface handling. Note that the Raspberry Pis use
3.3v logic while the Geiger counter is 5v, so appropriate
level translation is required. The output of the Geiger
counter was buffered through Schmitt triggers and con-
nected to appropriate GPIO pins of each Raspberry Pi,
giving each system the same input data.

VI. NETWORKING SUPPORT
One critical component for system deployment is to be

able to integrate into the university network infrastructure.
This involves meeting security requirements and export-
ing student accounts and file systems to the Raspberry Pi
computers. This allows students to remotely login to the
Pis in the same manner, and having the same available
resources, as any of their accounts on a “larger” computer.

To accomplish this the Raspberry Pis had the Raspbian
Linux distribution installed, patched, and updated with
security and kernel packages. The operating system was
then configured to work with the departmental NFS server
which provides student files. Login credentials are authen-
ticated through a combination of LDAP and Kerberos
configured to require initial login into an existing universi-
ty computer followed by a second login to a specific
Raspberry Pi identified by it’s IP address. This two-level
security allowed for easy remote access with enhanced
security.

Figure 1. Original Cluster

Figure 2. Enhanced Cluster

Figure 3. Raspberry Pi

Figure 4. SparkFun Geiger Counter

28 http://www.i-joe.org

PAPER
FROM GEIGER-COUNTERS TO FILE SYSTEMS: REMOTE HARDWARE ACCESS FOR THE OPERATING SYSTEMS COURSE

VII. RANDOM NUMBER ACQUISITION
As indicated earlier, random numbers are important for

security, encryption, and simulation. Software-only ap-
proaches attempt to seed a generator from entropy in the
system, such as time, and form an algorithmic series of
pseudo-random numbers. Certain physical phenomena,
such as radiation events and thermal noise, are believed to
be truly random [25]. Comparing the time difference be-
tween successive pairs of radiation events generates a
single bit. These timestamps are harvested to create ran-
dom bits, bytes, and words as necessary.

To support the acquisition of the timestamps, along
with other aspects of this project, a variety of open-source
software was deployed. This includes the GNU compiler
suite (C, C++), Python, including SciPy, Numpy. This
was supplemented by the pigpio [26] library to help man-
age GPIO access to the Geiger counter, and the FUSE and
Python FUSE libraries to support file system develop-
ment.

The pigpio library formed an essential part of this work.
An open-source software, it allows for managing signals
on the general-purpose IO pins of the Raspberry Pi com-
puters and makes these signals available to multiple users
simultaneously through a variety of software interfaces,
including a callback API.

Fig. 6 shows sample code for Geiger counter event col-
lection. When the Geiger counter indicates an event on
GPIO pin 23 of the Raspberry Pi the pigpio library inter-
cepts the signal on the falling-edge, which triggers a
callback to the function registered, in this case “mycb”.
The “mycb” function, in this case, gets the timestamp for
the event from the operating system and saves that
timestamp to a file for future use. It should be noted that
there is some time ambiguity in this approach since these
are multi-user, multi-process, operating systems so there
could be some bias introduced for the random numbers.

A visual inspection can be used as a quick check of the
plausibility of the random numbers being generated [27]
as shown in Fig. 5. In this image each bit in a number is
mapped to a single pixel which is set to either dark or light
corresponding to the bit value. Notice the lack of obvious-
ly apparent pattern in the image.

While the visual test is a reasonable first look at the
random numbers, there are other available test suites. One
commonly used test suite in the public domain is the ENT
pseudorandom number sequence test program [28]. This
program implements a variety of tests such as measuring
the entropy, compressibility, mean, Chi square, Monte
Carlo estimate for Pi, and a serial correlation coefficient.
Table 1, under Pre-Bias Removal, shows the results of
running this program on 1.2 million timestamps. Notice
that, while very good, there is some residual bias in the
sequence. Table 1, Post-Bias Removal, shows the data
after removing the bias [29].

Finally, Fig. 7 shows an application using the bits to
generate an image live on the web [30]. In this image
twelve random bits are used to form three 4-bit random
numbers, the first of which selects one of sixteen rows, the
second selects one of sixteen columns, and the third des-
ignates one of sixteen colors to display at location im-
age[row,column].

Students are given wide latitude to design and create
the specific mechanism for using/creating the random
numbers in their individual systems. For example, since

Figure 5. Random Bit Image

#!/usr/bin/python

import time,pigpio

fo=open("randtimegeiger.txt","a")
def mycb(x,y,z):
 t=time.time()

 print t
 fo.write(str(t)+’\n’)
 fo.flush()

pin=pigpio.pi()

cb=pin.callback(23,pigpio.FALLING_EDGE,mycb)
Figure 6. Pigpio Program Fragment

Figure 7. Snapshot Live Random Number Web Demonstration

TABLE I. ENT RANDOM TEST

 Pre-Bias Removal Post-Bias Removal
Entropy 1 1
Chi-square 0.671601 0.328496
Mean 0.499635 0.50008
Monte-Carlo-Pi 3.458389 3.137899
Serial-Correlation -0.333256 -0.000454

iJOE ‒ Volume 12, Issue 9, 2016 29

PAPER
FROM GEIGER-COUNTERS TO FILE SYSTEMS: REMOTE HARDWARE ACCESS FOR THE OPERATING SYSTEMS COURSE

background radiation provides relatively infrequent
events, on the order of thirteen to twenty counts/minute at
our location, it is not unusual for a data request to exhaust
the supply of truly random bits. At that point the student
can, for example, use the last remaining truly random bits
to seed a conventional pseudo-random number generator
until sufficient random data is reacquired. Others would
continually acquire bits in the background and save the
data over days and weeks, creating a larger pool of num-
bers.

VIII. FUSE FILE SYSTEM
Once random numbers are acquired, students are ex-

pected to develop their own File system in User Space
(FUSE) to provide user access to the random numbers.
The use of FUSE files systems within an operating sys-
tems class has been discussed in [31]. As a secondary
function, the student file system could also record the
background radiation rate into a log file.

FUSE [32] is a cooperative, call-back based interface to
the Linux file system infrastructure. The FUSE layer has
been used to implement a variety of useful file systems
ranging from NTFS [33] to encrypted file systems [34]. In
operation the user requests service through the normal
system call interface, trapping to the kernel. The Linux
Virtual File system layer validates the request and acti-
vates the FUSE specific API, which then relays the vali-
dated request to the user file system via callbacks defined
in the API. Since the actual reading and writing is imple-
mented in user space, all of the normal development tools
are available and API bindings to a variety of computer
languages can be easily provided. Thus students can work
in a language familiar to them, or can exploit development
efficiencies in high level scripting languages such as Py-
thon.

While the development occurs in user-space, and the
kernel does a great deal of the detailed communication
and validation work, the user is still responsible for im-
plementing all the traditional aspects of a typical file sys-
tem including directory structure, path management, file
creation, deletion, modification, as well as any associated
metadata.

Given the FUSE libraries and Geiger Counter access,
the students proceed with the task of creating a file system
that a) provides random numbers to the user program
when the file is read and b) logs the current estimate of
counts per minute when a file within the files system is
written to.

IX. DEPLOYMENT AND FUTURE WORK
Between the deployment of the original cluster and the

enhanced cluster this system has served approximately
sixty students divided into ten implementation teams.
Although the system is capable of serving the Geiger
counter data directly over the network, the file systems
were developed remotely on the Raspberry Pi. The system
was deployed and ran continuously, 24/7, for a total of
over sixty consecutive days without failure.

Building on the successful deployment, we would like
to extend this work in at least two directions. The first is
to do a systematic assessment of student attitudes and
outcomes now that we have a demonstrated, stable plat-
form to work with. The other is to integrate additional

hardware-based approaches to random number generation
into the system for comparison.

X. CONCLUSION
We show the development, implementation, and de-

ployment of an end-to-end, hardware and software, remote
platform supporting the development of file systems for
the computer science Operating Systems class. We believe
that this provides a rich experimental environment for
student projects.

REFERENCES
[1] A. Naddami, A. Fahli, M. Gourmaj, A. Pester, and R. Oros, “Im-

portance of a Network of Online Labs in Magrebian Countries”,
REV 2014 International Conference on Remote Engineering and
Virtual Instrumentation, pp. 77-78, 2014.

[2] R. Salah, G. R. Alves, and P. Guerreiro, “Reshaping Higher
Education Systems in the MENA Region: The Contribution of
Remote and Virtual Labs”, International Conference on Remote
Engineering and Virtual Instrumentation (REV), pp. 240-245,
2014. http://dx.doi.org/10.1109/rev.2014.6784265

[3] D. Ritchie and K. Thompson, “The UNIX Time-Sharing System”,
Communications of the ACM, vol. 17 number 7, pp. 365-375, July,
1974. http://dx.doi.org/10.1145/361011.361061

[4] M. T. Restivo, A. M. Lopes, L. D. Machado, and R. M. Moraes,
“Adding Tactile Information to Remote & Virtual Labs”, IEEE
Global Engineering Education Conference, 2011.
http://dx.doi.org/10.1109/educon.2011.5773287

[5] M. Edwards, E. Tovar, and O. Soto, “Embedding a Core Compe-
tence Curriculum in Computing Engineering”, ASEE/IEEE Fron-
tiers in Education Conference, 2008.

[6] A. Settle and B. Sedlak, “Computing Educator Attitudes about
Motivation”, unpublished Technical Report: arXiv:1603.08996v1,
2016.

[7] G. Mason, T. R. Shuman, and K. E. Cook, “Comparing the Effec-
tiveness of an Inverted Classroom to a Traditional Classroom in an
Upper-Division Engineering Course”, IEEE Transactions on Edu-
cation, vol. 56 number 4, pp. 430-435, November, 2013.
http://dx.doi.org/10.1109/TE.2013.2249066

[8] A. M. Kyle, D. C. Jangraw, M. Bouchard, and M. E. Downs,
“Bioinstrumentation: A Project-Based Engineering Course”, IEEE
Transactions on Education, vol. 59, number 1, pp. 52-58, Febru-
ary, 2016.

[9] V. Cardenas, L. Azucena, F. Bertacchini, L. Gabriele, A.
Tavernise, D. Elizabeth, O. Vizueta, P. Pantano, and E. Bilotta,
“Surfing Virtual Environment in the Galapagos Islands”, Interna-
tional Conference on Remote Engineering and Virtual Instrumen-
tation (REV), pp. 192-198, February, 2015.

[10] K. Dickmann and A. A. Kist, “Remote Network Laboratory
Development”, International Conference on Remote Engineering
and Virtual Instrumentation (REV), pp. 370-374, February, 2014.

[11] P. Abreu, M. R. Barbosa, A. M. Lopes, “Virtual Experiment for
Teaching Robot Programming”, International Conference on Re-
mote Engineering and Virtual Instrumentation (REV), pp. 395-
396, February, 2014. http://dx.doi.org/10.1109/rev.2014.6784199

[12] O. Arbelaitz, J. I. Martin, and J. Muguerza, “Analysis of Introduc-
ing Active Learning Methodolgies in a Basic Computer Architec-
ture Course”, IEEE Transactions on Education, vol. 58, no. 2, pp.
110-116, May, 2015. http://dx.doi.org/10.1109/TE.2014.2332448

[13] L. Uhsadel, M. Ullrich, A. Das, D. Karaklajic, J. Balasch, I. Ver-
bauwhede, and W. Dehaene, “Teaching HW/SW Co-Design with
a Public Key Cryptography Application”, IEEE Transactions on
Education, vol. 56, no. 4, pp. 478-483, November, 2013.
http://dx.doi.org/10.1109/TE.2013.2257785

[14] W. J. Keeler and J. Wolfer, “A Raspberry Pi Cluster and Geiger
Counter Supporting Random Number Acquisition in the CS Oper-
ating Systems Class”, International Conference on Remote Engi-
neering and Virtual Instrumentation (REV), pp. 344-345, Febru-
ary, 2016.

[15] Nieh, J. and Vaill, C., “Experiences Teaching Operating Systems
Using Virtual Platforms and Linux”, ACM SIGCSE 2005, 2005.

30 http://www.i-joe.org

PAPER
FROM GEIGER-COUNTERS TO FILE SYSTEMS: REMOTE HARDWARE ACCESS FOR THE OPERATING SYSTEMS COURSE

[16] Z. Gutterman, B. Pinkas, and T. Reinman, “Analysis of the Linux
Random Number Generator”, IEEE Symposium on Security and
Privacy, 2006. http://dx.doi.org/10.1109/sp.2006.5

[17] C. J. A. Bastos-Filho, J. D. Andrade, M. R. S. Pita, and A. D.
Ramos, “Impact of the Quality of Random Numbers Generators
on the Performance of Particle Swarm Optimization”, IEEE Inter-
national Conference on Systems, Man, and Cybernetics, pp. 4988-
4993, October, 2009. http://dx.doi.org/10.1109/icsmc.2009.53
46366

[18] A. A. Thomas and V. Paul, “Random Number Generation Meth-
ods a Survey”, International Journal of Advanced Research in
Computer Science and Software Engineering, vol. 6, no. 1, pp.
556-559, January, 2016.

[19] J. Wolfer, “A Heterogeneous Supercomputer Model for High-
Performance Parallel Computing Pedagogy,” IEEE Global Engi-
neering Education Conference-ITEP, March, 2015.
http://dx.doi.org/10.1109/educon.2015.7096063

[20] J. Wolfer, “A Model Supercomputer for Instructional Support
(demonstration),” exp.at’15, The Third International Conference
for Online Experimentation, June, 2015.

[21] J. Adams, J. Castwell, S. J. Matthews, C. Peck, E. Shoop, D. Toth,
and J. Wolfer, “The Micro-Cluster Showcase: 7 Inexpensive Beo-
wulf Clusters for Teaching PDC”, Special Session: ACM Tech-
nical Symposium on Computing Science Education, March, 2016.
http://dx.doi.org/10.1145/2839509.2844670

[22] Raspberry Pi Foundataion, “Raspberry Pi”, https://www.rasp
berrypi.org/

[23] Nvidia, “Jetson TK 1”, http://www.nvidia.com/object/jetson-tk1-
embedded-dev-kit.html

[24] Sparkfun, “Geiger Counter Random Number Tutorial”,
https://www.sparkfun.com/tutorials/132

[25] J. Keisey, B. Schneier, D. Wagner, and C. Hall, “Cryptanalytic
Attacks on Pseudorandom Number Generators”, Fast Software
Encryption, Fifth International Workshop Proceedings, March,
1998.

[26] Pigpio, “pigpio library”, http://abyz.co.uk/rpi/pigpio/
[27] D. Beznosko, T. Beremkulov, A. Duspayev, A. Iakovlev, A.

Tailakov, and M. Yessenov, “Random Number Hardware Genera-
tor using Geiger-Mode Avalanche Photo Detector”, unpublished
preprint: arXiv:1501.05521, 2015.

[28] J. Walker, “ENT: A Pseudorandom Number Sequence Test Pro-
gram”, http://www.fourmilab.ch/random/, 2016.

[29] J. Mather, http://www.ciphergoth.org/crypto/unbiasing/, 2016.
[30] J. Wolfer, “Random Number Demonstration”, http://www.cs.

iusb.edu/~jwolfer/
[31] J. Wolfer, “Linux Experience in the General Operating Systems

Class”, International Conference on Engineering and Technology
Education, March, 2014. http://dx.doi.org/10.14684/intertech.
13.2014.42-44

[32] FUSE, “File system in User Space”, https://github.com/
libfuse/libfuse

[33] Ntfs3g,”NTFS FUSE File system”, http://www.tuxera.com/
community/open-source-ntfs-3g/#tab-1414502495464-2-9

[34] V. Gough, “ENCFS Encrypted File System”, https://github.com/
vgough/encfs

AUTHORS
J. Wolfer is with the Department of Computer Science,

Indiana University South Bend, South Bend, IN, 46634,
USA.

W. J. Keeler, is with the Department of Computer Sci-
ence, Indiana University South Bend, South Bend, IN,
46634, USA.
Submitted, 09 March 2015. Published as resubmitted by the authors on
09 April 2015.

iJOE ‒ Volume 12, Issue 9, 2016 31

