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Abstract—The traditional multi-hop positioning algorithm is 
easily affected by the network anisotropy, thus resulting in 
unstable positioning performance. The wireless sensor net-
work multi-hop positioning algorithm based on continuous 
regression is put forwarded in the paper to address this 
problem. By utilizing the continuous regression model, the 
mapping relationship between the hop count and Euclidean 
distance is constructed so as to transform the positioning 
process model into regression prediction. Theoretical analy-
sis and simulation results show that the improved algorithm 
improves the positioning accuracy, and avoids the influence 
of the network topology anisotropy on the performance of 
the algorithm. The algorithm requires little expenditure and 
few parameters so it can be adapted to wireless sensor net-
works with irregular nodes distribution, and can be of great 
engineering application value. 

Index Terms—wireless sensor network, multi-hop position-
ing algorithm, continuous regression, ML-CR node. 

I. INTRODUCTION 
Wireless sensor networks (WSN) have been widely 

used in large-scale data acquisition and environmental 
monitoring because of its low cost, strong adaptability and 
other attributes. However, about 80% of the application is 
related to the node position among the numerous applica-
tion areas. Therefore, developing a large scale positioning 
system with low-cost, high precision and suitability for 
practical application is very much needed in WSN.  

The range-free positioning method is often used for po-
sitioning of large scale wireless sensor networks. Most of 
range-free positioning methods obtain the hop count be-
tween nodes through the connection between the nodes 
and estimate the location of unknown nodes by averaging 
hop distance and hop count. Because the method is easily 
implemented and has relatively low hardware require-
ments, it is quite suitable to meet the requirements of 
positioning of large scale wireless sensor networks. How-
ever, the positioning accuracy of range-free multi-hop 
positioning technology is greatly affected by the network 
topology. In an isotropic network with high node density 
and even distribution, the ideal positioning results can be 
achieved [1]. However, under the condition of network 
environment anisotropy such as uneven and sparse distri-
bution of nods, the positioning effect is very poor.  

Multi-hop positioning is more suitable for application 
in the actual environment and has lower computational 
complexity, higher positioning accuracy and better adapt-
ability. As for the defects of multi-hop positioning, on the 
basis of the common multi-hop positioning method and 

partial least squares regression algorithm, the multi-hop 
positioning algorithm based on continuous regression is 
proposed in this paper[2]. The ML-CR method takes the 
continuous regression model as the optimal relational 
model between actual distance and node hop count, and it 
predicts the distance between an unknown node and a 
beacon node. 

II. CHARACTERISTICS OF WIRELESS SENSOR NETWORK 
Compared with a traditional network, the wireless sen-

sor network has the following characteristics: 
(1) The sensor network has a large quantity of nodes 

and high density. 
With MEMS technology, a sensor network node is mi-

cro. The communication and sensing radius of a node is 
limited to between ten meters to tens of meters, and most 
of the nodes are in sleep mode so as to prolong network 
lifetime [3]. Therefore, a redundancy sensor node will be 
deployed to generally guarantee network reliability. Node 
quantity and density of a sensor network are several orders 
of magnitude higher than those of an Adcock network, 
which can be plagued by a series of problems such as 
signal conflict, selection of information transmission path 
and cooperative work of nodes. A sensor network can 
operate under adverse environmental conditions, and 
nodes in the network may be invalidated due to various 
reasons. In order to guarantee normal operation of the 
network, a sensor network must be equipped with a cer-
tain fault-tolerant capability, and sensor nodes may have a 
certain failure rate [4].  

(3) Node energy, calculation capacity and storage ca-
pacity are all limited 

As a sensor node is micro and powered by batteries 
with limited energy and that are difficult to supplement or 
replace. Power consumption of a sensor node is one of the 
key constraints during the design of the whole sensor 
network node [5]. It determines the working life of the 
network. Furthermore, calculation and storage capacities 
of sensor nodes are limited, making them unable to con-
duct complicated operations, and matured protocol and 
algorithm in the traditional hutment network are too ex-
pensive for a sensor network. Therefore, a simple and 
effective protocol and algorithm must be redesigned.  

(4) Varying network topology structure  
As a sensor network has its own characteristics, the 

sensor node switches between operation mode and sleep 
mode, and the sensor node may be invalid due to various 
reasons at any given time, or a new sensor node may enter 
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the network to increase robustness of the network. The 
topological structure of a sensor network may change, and 
this challenges validity for various algorithms (routing 
algorithm and link quality control protocol) in the net-
work. In additional, if the node can move, it will also 
cause topological changes of network [6]. 

(5) Data-centered 
Attention is generally paid to the value of a certain ob-

servation index in a certain area in the sensor network 
rather than specific observation of data changes in a cer-
tain node. For example, in the experiment, the sensor 
network will know “temperature in northeast corner of the 
detection area” rather than “temperature value detected by 
node No.8” [7]. This is the data-centered characteristic of 
a sensor network. Data transmitted by a traditional net-
work is linked to the physical address of the node. Data-
centered characteristics require that the sensor network 
break away from the addressing process of a traditional 
network so as to conduct information fusion quickly and 
extract useful information and send it directly to users [8].  

As a wireless sensor network is distributed randomly 
and intensively, it suits the adverse environment of a bat-
tlefield. In a military field, a wireless sensor network can 
be used to gather intelligence about the enemy and moni-
tor deployment of partners [9]. It can also be used to 
monitor equipment, materials and the battlefield itself to 
assess the threat of an attack of biological and/or chemical 
weapons. The military can place a large numbers of inex-
pensive micro sensor nodes in the area of interest using 
airplanes so as to monitor changes in the surrounding 
environment in real time through these sensor nodes, and 
they can also send monitoring data to the command’s 
monitoring center through a satellite channel or ground 
base station [10]. Conveyance and collection of infor-
mation has become a vital aspect in modern warfare, and 
prompt information acquisition and response time are of 
great importance on the battlefield. A sensor network can 
provide prompt and accurate information for command, 
and it is of great importance to enhance national defense 
and offensive military capability [11]. 

III. POSITIONING ALGORITHM 
The positioning algorithm is generally divided into two 

stages: distance measurement and positioning calculation. 
In the first stage, in the self-organization process of the 
whole network, each node will collect an RSSI value from 
itself to the adjacent node of one hop. When the collected 
quantity reaches the requirement, the algorithm will con-
duct data filtering, calculate its mean value and save the 
final result. After the network organization is completed, 
the beacon node will broadcast positioning data frames, 
containing beacon node ID, coordinate information, data 
frame life cycle, hop count and RSSI accumulated value. 
The hop count and RSSI accumulated value will be initial-
ized to 0. When an unknown node receives the positioning 
data frame, it will refer to the local history table to verify 
whether the frame has been received. If it does not receive 
the frame, it will save the data frame directly. If it receives 
the frame, it will compare the data frame with the RSSI 
accumulated value stored in the local table to determine 
whether the RSSI accumulated value of the newly re-
ceived data frame is smaller than the local value [12]. If it 
is smaller, the unknown node will save the coordinate and 
the RSSI accumulated value of the data frame and will 
add one to the hop count and subtract one from the life 

cycle. It will also total the RSSI value and the accumulat-
ed value from the sending node to the receiving node at 
the same time and will store the value into the accumulat-
ed value and then transmit the newly handled data frame 
[13]. If the frame is larger than the local value, the frame 
will be discarded. If the life cycle is 0, data frame for-
warding will be stopped. In the second stage, when the 
unknown node receives coordinates of three beacon nodes 
or above, it can conduct positioning calculation with tri-
lateration or maximum likelihood estimate (MLE) to de-
termine the coordinate of the unknown node [14]. The life 
cycle value of the data frame can be changed according to 
different network sales so as to promote network coverage 
of positioning. However, the accuracy of distance meas-
urement will decline [15]. 

A. ML-CR node positioning model  
If there is a sensor network S={S1,S2,…,Sm+n}in a two-

dimensional space and it contains m beacon nodes and an 
unknown nodes, the node coordinate can be expressed in 
Equation (1). 

       (1) 

where positions of m beacon nodes Si!B are known and 
positions of the remaining n nodes Si!U are unknown and 
B={Si|i=1,2,…,m}, U={Sj|j=m+1,…,m+n}. Minimum hop 
count and distance collected by the node are represented 
with two groups of vector data sets respectively. 
h(Si,Sj)!H={0,1,2,…} is used to represent the number of 
branches from node Si to node Sj and Euclidean distance 
from node Si to node Sj can be expressed with Equation (2). 

                (2) 

D=[di1,di2,…,dm]. Therefore, the positioning problem can 
be formulated as: 

     (3) 

As there is a mapping relation between the minimum 
hop count and the actual distance of beacon nodes, namely: 

                                  (4) 
Where !={!1,!2,…,!m+n} is regression coefficient and e 

is random error. Equation (4) shows that there are serious 
multiple correlations in the variables in the equation, or 
the quantity of sample points in the equation is less than 
the quantity of the variables [16]. If Equation (4) is forci-
bly calculated in this circumstance, the estimate will be 
invalid. In addition, the accuracy of estimate value ! is 
related to both input and output variables. Input and out-
put together decide prediction direction.  

In order to gain the optimal linear relationship between 
hop count and actual distance, optimal estimate value �  
of ! is needed for the equation. Therefore, ||e||2"min is 
necessary. At this time, HTH�=HTD. Equation (4) is ex-
pressed below with continuous regression model: 

                             (5) 

where Th is compositional vector matrix and h is quanti-
ty of hidden variables. Tk=HWk and wh={w1,w2,…,wh}. 
Selection criteria for continuous regression weight vector 
wi(i=1,2,…,h) is as follows: 
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   (6) 

This meets the following constraint condition. For any 
j<i, there is:  

        (7) 

In Equation (6): 0<"<1, Dov represents the sample co-
variance estimate and Var represents the sample variance 
estimate. The final purpose of the continuous regression 
model is to gain regression coefficient !. Parameter # in 
modular form (5) is estimated by total least square. There 
is: 

                      (8) 

For the given " and h, there is 

                             (9) 

Regression coefficient ! will be determined by Equa-
tion (10) 

                   (10) 

After estimated item ! is substituted into Equation (4), 
the prediction model will be obtained. After the hop count 
from an unknown node to a known node is input into the 
equation, the corresponding estimated distance will be 
obtained. The least square method will be used to estimate 
unknown node coordinate according to known node coor-
dinate and the estimated distance to obtain the estimated 
coordinate.  

B. ML-CR algorithm 
The ML-CR algorithm proposed in the paper is com-

prised of two stages: training and positioning.  
(1) Training stage 
In order to eliminate the dimension difference between 

hop count and Euclidean distance units, the algorithm 
conducts standardization treatment for H and D (including 
minus mean value and initial standard deviation). It is 
assumed that !  and !  are matrices of H and D after 
standardization respectively. After! and ! undergo con-
tinuous regression, the cross inspection method will be 
used to gain the optimal parameters " and h and corre-
sponding regression coefficient  �",h. Therefore:  

        (11) 

Now, m training models can be obtained from the sen-
sor network. !train={!1,!2,…,!m} and they will be broadcast 
to each node Sp in the network[17].  

(2) Positioning stage 
Each unknown node Sj uses its hop count matrix Htest to 

beacon node and previous training model !train to predict 
its Euclidean distance Dpred from the unknown node, 
namely: 

       (12) 

Where ! test is matrix of Htest after standardization 
treatment; !  is mean value of H and repmat(!,n) is accu-
mulation of n rows of  !.  Htest 

C. Network model parameter 
For the positioning algorithm simulation of the whole 

wireless sensor network, the following network parame-
ters must be defined: 

(1) Sensor node coordinate system 
As wireless sensor network nodes are distributed in a 

two-dimensional plane in the experiment, the two-
dimensional coordinate system is also be used during 
simulation and the expressed coordinate will be consid-
ered the absolute coordinate. For example, coordinates of 
node x and y are 2m and 6m respectively.  

(2) Node distribution density 
Node distribution density P refers to the number of 

nodes in a given unit area. If there are n sensor nodes in a 
place with an area of S, the node distribution density of 
that place is P=S/n. 

(3) Network connectivity  
The number of nodes that can communicate directly 

with other nodes in the network is called network connec-
tivity; namely, the number of neighboring nodes with a 
single hop of a node. The value of network connectivity is 
based on node density and radio frequency communica-
tion radius R of the node. An increase in node density or 
radio frequency communication radius of a node will 
increase network connectivity. 

(4) Beacon node density 
Beacon node density refers to ratio between the number 

of beacon nodes in the network and total node number.  
(5) Measurement method for distances between nodes 
In actual positioning, distances between nodes are 

measured by the RSSI method and there is a measurement 
error. The estimation model is used in the simulation ex-
periment to estimate distances between nodes in this paper.  

Apart from the basic parameters above, the following 
problems will be resolved for the establishment of the 
sensor network and related simulations: 

(1) Area s of node distribution area, number of node n 
and communication radius R for the radio frequency mod-
ule of a node will be preset, as these parameters determine 
node density and network parameters such as sensor net-
work connectivity and beacon node density. 

(2) Position coordinates of unknown nodes are generat-
ed randomly and special consideration is needed for bea-
con nodes. The trilateration-based positioning algorithm 
used in this paper requires the presence of at least three 
beacon nodes during positioning of unknown nodes. The 
positions of four beacon nodes are generated according to 
this requirement and their positions are fixed and distrib-
uted around the network. Other beacon nodes generated 
randomly are distributed among these four beacon nodes. 

(3) If the estimated distance between nodes B and A is 
less than the radio frequency communication radius R of 
node A, then node B is determined to be a single-hop 
adjacent node of node A. 

As the wireless sensor network is distributed randomly 
and intensively, it is suitable for the adverse environment 
of a battlefield. In the military field, a wireless sensor 
network can be used to gather intelligence about the ene-
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my and monitor the deployment of partners. It can also be 
used to monitor equipment, materials and the battlefield 
itself to ascertain any threat of an attack using biological 
and/or chemical weapons. The military can place a large 
quantity of inexpensive micro sensor nodes in the area-of-
interest from airplanes so as to monitor any changes in the 
surrounding environment in real time through these sensor 
nodes. They can also send monitoring data to the com-
mand monitoring center through satellite channels or a 
ground base station.  

(4) Each sensor node is calculated in parallel in practi-
cal application and several positioning coordinate values 
will be sent to a certain aggregation node at the same time. 
Therefore, each node is calculated according to the se-
quence in the global positioning module. The performance 
of the simulation positioning algorithm is measured by the 
following indexes.  

IV. SIMULATION AND ANALYSIS 

A. Algorithm complexity analysis 
The complexity of ML-CR method is comprised of 

communication and computation. Similar to the commu-
nication process such as distance vector- light-flooding 
algorithm, fuzzy algorithm, close distance-mapping algo-
rithm, positioning algorithm based on support vector re-
gression and ridge regression algorithm, each node needs 
the flooding method to calculate hop count between nodes. 
Therefore, their communication overheads are the same. 
Communication overheads of six different methods are 
about o(n2m). N is the number of nodes and m is the num-
ber of beacon nodes. After each unknown node determines 
its skip distance from the beacon node, DV-hop and 
Amorphous method will use the least square method to 
estimate the unknown position, which requires computa-
tion overhead of o(m3). The PDM method cuts off singular 
value decomposition to dispose of data, which requires 
computation overhead of o(m3), and then it will operate 
with least squares. Therefore, computation overhead of the 
PDM method is higher than that of the DV-hop and 
Amorphous methods. Prompt information acquisition and 
response in modern warfare are increasingly of great im-
portance, and sensor networks can fill this need. 

LMVR adopts the regression method based on support 
vector machine, and a quadratic programming problem 
must be resolved in the SVM solution procedure. Its com-
putation complexity is between o(m2)#o(m3) generally 
according to the optimization method. However, as re-
gression based on traditional SVM is multi-input single-
output, for m training samples, the computation cost of its 
modeling is o(m3)# o(m4). In addition, the selection of 
nuclear parameter, penalty coefficient and insensitive loss 
function width also require computation cost, while 
achieving the optimum is difficult. RR adopts the ridge 
regression method which is similar to least squares. There-
fore, after the ridge parameter is selected, computation 
overhead is o(m3). If the method in reference [2] is adopt-
ed, the computation overhead can be reduced to o(m2log 
m). The computation overhead of the ML-CR method 
proposed in this paper is similar to that of the RP method. 
There will be additional overhead after optimal parameter 
"  and h are obtained and the total computation overhead 
is o(m3). Table 1 lists communication and computation 
overhead complexity of six types of positioning algo-
rithms. 

Hundreds of sensor nodes are deployed in a large scale 
wireless sensor network, and it is difficult to actualize a 
real network under current experiment conditions. There-
fore, the MATLAB simulation method is adopted in this 
paper to evaluate the advantages and disadvantages of the 
positioning algorithm. The experiment area is set as 
1000"1000. Uniform distribution and random distribution 
of nodes are used to analyze the influence of network 
topology anisotropies on algorithm performance. Three 
types of network topology structures are set in the experi-
ment: C-shape, X-shape and Z-shape structures. Position-
ing accuracy is generally defined as the ratio between the 
error value and the node communication radius. For ex-
ample, a positioning accuracy of 10% means that the posi-
tioning error is equal to 10% of the node communication 
radius. 

The distributed positioning method is also used to di-
vide the positioning area into grids, and the positioning 
accuracy depends on the size of the grid, such as radar and 
positioning method based on compressed sensing. In order 
to evaluate the positioning accuracy of the entire network, 
average positioning error is generally used. It is defined as 
the ratio of the average error of Euclidean distance be-
tween the estimated position and the real position of the 
unknown node. Indexes to evaluate the positioning error, 
maximum error and minimum error are considered and 
compared in this paper. 

  (13) 

TABLE I.  SIX KINDS OF LOCALIZATION ALGORITHM OF 
COMMUNICATION AND COMPUTING COMPLEXITY OVERHEAD 

Localization 
algorithm 

Communication 
complexity 

Computational 
complexity 

DV-hop O(n2m) O(m3) 
Amorphous O(n2m) O(m3) 

PDM O(n2m) O(m2)+O(m3) 
LSVR O(n2m) O(m2)- O(m3) 

RR O(n2m) O(m2logm) 
ML-CR O(n2m) O(m3) 

 

B. Uniform node deployment  
200 nodes are deployed uniformly in the experimental 

area in total and the distance is set between nodes at 50 
and the node communication radius R=150, 200, 250, 300 
and 350. The positioning result of the C-shape wireless 
sensor network of the beacon node 20 is shown in Table 2. 

The positioning result of the C-shape when the commu-
nication radius is R=200, and the number of beacon nodes 
M=30, 40, 50, 60 and 70 is shown in Table 3. The posi-
tioning results of the six algorithms in uniformly deployed 
networks of C-shape, X-shape and Z-shape when the 
communication radius is R=250 and the number of beacon 
nodes M=20 are shown in Table 4. 

It can be seen from the simulation result that in regular 
node deployment, the ML-CR algorithm put forward in 
this paper has good positioning accuracy. When the com-
munication radius is R=250 and the number of beacon 
nodes is M=20, the positioning accuracy is improved 
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about 60% compared with the traditional multi-hop posi-
tioning algorithm DV-hop. 

C. Random node deployment 
500 nodes are deployed in the experimental area at ran-

dom and the distance is set between nodes at 50. The 
positioning result of the C-shape when the number of 
beacon nodes is M=100 and the communication radius of 
node is R=150, 200, 250, 300 and 350 is shown in Table 4. 
The positioning result of C-shape when the communica-
tion radius is R=200 and the number of beacon nodes is 
M=30, 40, 50, 60 and 70 is shown in Table 5. 

It can be seen from the simulation result shown in Table 
5 that with random node deployment, the positioning 
algorithm based on the continuous regression model put 
forward in this paper has good positioning accuracy as 
well. When the communication radius of a node is R=250 
and the number of beacon nodes is M=100, the position-

ing accuracy is improved about 63%, compared with the 
traditional multi-hop positioning method DV-hop. 

The range-free positioning method is often used for po-
sitioning of large scale wireless sensor networks. Most of 
range-free positioning methods obtain the hop count be-
tween nodes through the connection between the nodes 
and estimating the location of unknown nodes with the 
average hop distance and hop count. Because the method 
is easy to be realized and has relatively low hardware 
requirements, it is quite suitable for the positioning re-
quirements of large scale wireless sensor networks. How-
ever, the positioning accuracy of range-free multi-hop 
positioning technology is greatly affected by the network 
topology. In the isotropic network with high node density 
and even distribution, the ideal positioning results can be 
achieved. However, in the network environment, with 
anisotropy such as uneven and sparse distribution of 
nodes, the positioning effect is poor. 

TABLE II.   
VARIOUS ALGORITHMS POSITIONING ERROR INDEX CHANGING WITH COMMUNICATION RADIUS R (M=20) 

Localization 
algorithm Error indicators R=150 R=200 R=250 R=300 R=350 

DV-hop 
ALE 2.3021 1.2021 1.5245 0.7415 0.4215 
MAE 1.7254 1.5212 1.2652 0.5845 0.2514 
MIE 2.0125 1.2632 1.3265 0.6525 1.0254 

Amorphous 
ALE 0.2351 2.3252 2.0154 2.0147 0.2658 
MAE 0.3652 2.3021 2.0214 2.5265 0.3202 
MIE 0.5241 0.2514 2.3201 2.0124 0.6252 

PDM 
ALE 0.5241 0.7541 1.3252 1.6585 0.3254 
MAE 0.5695 0.6215 1.0214 1.2652 1.3625 
MIE 0.5454 0.8514 1.5245 1.6251 2.0125 

LSVR 
ALE 0.3625 0.5021 2.3625 1.6021 0.9526 
MAE 0.8541 0.6254 2.1542 1.0485 0.3652 
MIE 0.5265 0.2154 2.0126 1.2653 0.5141 

RR 
ALE 0.6584 0.6584 0.6958 0.3526 0.4512 
MAE 0.5124 0.9545 0.5487 0.3145 0.5252 
MIE 0.4215 0.5241 0.5254 0.2514 0.3261 

ML-CR 
ALE 0.4112 0.5144 0.6585 0.3652 0.4152 
MAE 0.4854 0.6524 0.6459 0.9852 0.2012 
MIE 0.4856 0.3626 0.4852 0.3658 0.8585 

TABLE III.   
DIFFERENT ALGORITHMS POSITIONING ERROR INDEX CHANGING WITH COMMUNICATION RADIUS R (R=20) 

Localization 
algorithm Error indicators R=150 R=200 R=250 R=300 R=350 

DV-hop 
ALE 1.2022 1.8545 1.5425 1.3265 2.0124 
MAE 1.3625 1.5265 1.3253 1.3255 2.2123 
MIE 1.9585 1.8452 2.0121 1.2522 0.5423 

Amorphous 
ALE 1.9025 1.7142 0.9525 0.6855 0.6251 
MAE 2.2012 1.2515 0.4582 0.7896 0.3625 
MIE 1.6325 1.6250 0.4956 0.8512 0.4715 

PDM 
ALE 0.6625 0.9525 0.2565 2.3625 0.8516 
MAE 0.7415 0.5236 0.7825 1.3658 0.3652 
MIE 0.5265 0.7415 0.9201 2.0123 0.1246 

LSVR 
ALE 0.5215 0.8526 0.6582 1.3625 0.4102 
MAE 0.5201 0.5265 0.4852 1.0254 0.8203 
MIE 0.6585 0.5236 0.6958 1.3625 0.5025 

RR 
ALE 0.4154 0.4585 0.1545 1.2012 0.3625 
MAE 0.4568 0.6585 0.1589 0.4151 0.5142 
MIE 0.4747 0.3652 1.8475 0.2514 0.3625 

ML-CR 
ALE 0.4150 0.4584 1.3652 0.3625 0.1545 
MAE 0.5485 0.6525 1.0256 0.4569 0.8523 
MIE 0.4525 0.4152 0.4858 0.4578 1.2523 
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TABLE IV.   
VARIOUS ALGORITHMS POSITIONING ERROR INDEX CHANGING WITH COMMUNICATION RADIUS R (M=20) 

Localization 
algorithm Error indicators R=150 R=200 R=250 R=300 R=350 

DV-hop 
ALE 2.0120 1.2012 1.0236 0.7415 0.4525 
MAE 2.3262 1.4520 0.3625 1.2525 1.2021 
MIE 1.7452 1.2002 1.0251 0.6252 0.6252 

Amorphous 
ALE 2.0325 2.0121 2.3602 1.5021 0.2012 
MAE 2.3620 2.3021 2.0325 2.3602 1.0236 
MIE 2.0212 2.1020 0.6625 0.4252 0.3625 

PDM 
ALE 0.3652 0.3625 0.5626 0.4582 0.1026 
MAE 0.8585 0.1542 0.6925 2.0358 0.2323 
MIE 0.4546 0.6253 0.7454 1.3602 0.2514 

LSVR 
ALE 0.5156 0.5212 0.7525 0.2025 0.2925 
MAE 0.7445 0.5236 0.5656 0.4858 0.2360 
MIE 0.5012 0.5145 0.6925 0.6256 0.2545 

RR 
ALE 0.6256 0.6202 0.6252 0.6564 0.3266 
MAE 0.1526 0.4251 0.5012 0.8545 0.1212 
MIE 0.4152 0.5514 0.5412 0.6933 0.1745 

ML-CR 
ALE 0.4695 0.4201 0.3232 0.3656 0.3656 
MAE 0.4825 0.5236 0.3025 0.5151 0.4125 
MIE 0.4152 0.8021 0.4152 0.3626 0.2515 

TABLE V.   
VARIOUS ALGORITHMS POSITIONING ERROR INDEX CHANGING WITH COMMUNICATION RADIUS R (M=20) 

Localization 
algorithm Error indicators R=150 R=200 R=250 R=300 R=350 

DV-hop 
ALE 2.0212 0.5454 1.0212 0.7444 0.4584 
MAE 0.3625 0.6251 1.6253 1.2031 1.0255 
MIE 2.3652 0.2541 0.3652 0.4512 0.2512 

Amorphous 
ALE 2.0121 0.6255 1.5152 1.2021 0.6251 
MAE 2.1212 0.4152 1.2635 2.0121 1.3205 
MIE 1.0362 0.2012 2.0112 1.3021 0.6323 

PDM 
ALE 1.0254 0.5252 0.7141 2.031 0.3232 
MAE 0.8525 1.3602 0.8565 0.4515 0.2012 
MIE 0.6565 1.6251 0.1023 0.3653 0.2111 

LSVR 
ALE 0.3695 1.5121 0.3020 0.5141 0.1251 
MAE 0.4584 1.2020 0.4012 0.5454 0.3622 
MIE 0.4512 1.2515 0.3289 0.2626 0.3262 

RR 
ALE 0.4521 2.0321 0.3602 0.5452 0.3625 
MAE 0.4878 0.6252 0.3625 0.3665 0.4545 
MIE 0.8525 0.4522 0.5252 0.6262 0.3625 

ML-CR 
ALE 0.5656 0.4858 0.4152 0.3626 0.5151 
MAE 0.6454 0.4154 0.3626 0.5252 0.5252 
MIE 0.6254 0.4859 0.5151 0.1456 0.4151 

 
V. CONCLUSION 

A wireless sensor network multi-hop positioning algo-
rithm based on continuous regression is put forward in this 
paper. The method defines the positioning problem as a 
regression problem, and it effectively eliminates the im-
pact of network anisotropy on positioning performance. 
The computing complexity of the method is less than that 
of the traditional method. The experiment result shows 
that compared with the traditional DV-hop algorithm, the 
positioning accuracy of the method put forward in this 
paper has been greatly improved, but the ML-CR algo-
rithm requires a certain sufficient number of known nodes 
in the training stage to improve accuracy. In addition, the 
model in this paper will be further optimized. 

The traditional multi-hop positioning algorithm is easily 
affected by the network anisotropy, thus resulting in un-
stable positioning performance, and the wireless sensor 
network multi-hop positioning algorithm based on contin-
uous regression is put forwarded in the paper to address 

this problem. By utilizing the continuous regression model, 
the mapping relationship between the hop count and Eu-
clidean distance is constructed so as to transform the posi-
tioning process model into regression prediction. Theoret-
ical analysis and simulation results show that the im-
proved algorithm improves the positioning accuracy, and 
it avoids the influence of the network topology anisotropy 
on the performance of the algorithm. The algorithm re-
quires little expenditure and few parameters so it can be 
adapted to wireless sensor networks with irregular nodes 
distribution, and can be of great engineering application 
value. 

REFERENCES 
[1] J. Zhipeng, Z. Sanguo, “Reliability evaluation of wireless sensor 

networks using logistic regression,” 2010 WRI International Con-
ference on Communications and Mobile Computing, CMC 2010, 
Vol. 3, pp. 334-338, April 2010. 

[2] C. Aditi, V. Palaniandavar, “An efficient statistical approach for 
time synchronization in wireless sensor networks,” International 

16 http://www.i-joe.org



PAPER 
WIRELESS SENSOR NETWORK MULTI-HOP POSITIONING ALGORITHM BASED ON CONTINUOUS REGRESSION 

 

Journal of Communication Systems, Vol. 29, pp. 722-733, March 
2016. http://dx.doi.org/10.1002/dac.2944 

[3] J.B. Predd, S.R. Kulkarni, H.V. Poor, “Distributed kernel regr 
ession: An algorithm for training collaboratively,” 2006 IEEE In-
formation Theory Workshop, ITW 2006, pp. 332-336. 
http://dx.doi.org/10.1109/ITW.2006.1633840 

[4] C. Jongyoo, “Development and evaluation of an ambulatory stress 
monitor based on wearable sensors,” IEEE Transactions on Infor-
mation Technology in Biomedicine, Vol. 16, pp. 279-286, March 
2012. http://dx.doi.org/10.1109/TITB.2011.2169804 

[5] W. Shuai, Z.Y. Sheng. “The simulation of mobile robots pursuit 
collision problem in wireless sensor network,” Proceedings of the 
27th Chinese Control Conference, pp. 190-193, April 2008.  

[6] O.E.K. Aktouf, I. Parissis, “SMART service for fault diagnosis in 
wireless sensor networks,” Proceedings - 6th International Con-
ference on Next Generation Mobile Applications. NGMAST 2012, 
pp. 211-216. 

[7] I. Aydin, M. Karaköse, “Wireless sensor network based fault 
diagnosis approaches,” 2013 21st Signal Processing and Commu-
nications Applications Conference, SIU 2013, pp. 201-211. 

[8] S.H. Chang, “A causal model method for fault diagnosis in wire-
less sensor networks,” Proceedings-10th IEEE International Con-
ference on Computer and Information Technology, CIT-2010, pp. 
155-162. http://dx.doi.org/10.1109/cit.2010.65 

[9] C.L. He, “Technology research on the fault diagnosis of wireless 
sensor network system,” Advanced Materials Research, vol. 84, 
pp. 442-445, April 2014. 

[10] X.H. Jin, T.W.S. Chow, “Kuiper test and autoregressive model-
based approach for wireless sensor network fault diagnosis,” Wire-
less Networks, vol. 21, pp. 829-839, May 2015. 
http://dx.doi.org/10.1007/s11276-014-0820-0 

[11] P.M. Khilar, “Intermittent fault diagnosis in wireless sensor net-
works,” Proceedings-10th International Conference on Infor-
mation Technology, ICIT 2007, pp. 145-147. 
http://dx.doi.org/10.1109/icit.2007.15 

[12] Q. Li, “Wireless sensor network fault diagnosis method of optimi-
zation research and simulation,” Applied Mechanics and Materi-
als, vol. 347, pp. 955-959, May 2009. 

[13] R.F. Liu, “Fault diagnosis of wireless sensor based on ACO-RBF 
neural network,” Proceedings-2010 3rd IEEE International Con-
ference on Computer Science and Information Technology, 
ICCSIT 2010, pp. 248-251. 

[14] T.Y. Li, “Fault diagnosis of auxiliaries in power plants based on 
wireless sensor networks with vibration transducer,” Proceedings-
2010 2nd IEEE International Conference on Network Infrastruc-
ture and Digital Content, IC-NIDC 2010, pp. 732-736. 
http://dx.doi.org/10.1109/icnidc.2010.5657877 

[15] B. Tang, B. Deng, L. Deng, “Mechanical fault diagnosis method 
based on multi-level fusion in wireless sensor networks,” 
Zhendong Ceshi Yu Zhenduan/Journal of Vibration, Measurement 
and Diagnosis, vol. 36, pp. 92-96, April 2016. 

[16] B. Steffen, L. Cyril, “Rollout Algorithms for Wireless Sensor 
Network-Assisted Target Search,” IEEE Sensors Journal, Vol. 15, 
pp. 3835-3845, July 2015. http://dx.doi.org/10.1109/JSEN. 
2015.2393893 

[17] K. Sanjeev, V. Poor, “Regression in sensor networks: Training 
distributively with alternating projections,” Proceedings of SPIE - 
The International Society for Optical Engineering, Vol. 5910, pp. 
1-15, April 2005. 

AUTHORS 
Weimin Han is an associate professor with Department 

of Wind engineering, Hunan Vocational institute of Tech-
nology, Xiangtan 411000, China. Her research interests 
include wind power engineering, information engineering 
and automation. (e-mail: B12090018@hnu.edu.cn).  

Shijun Li is a doctoral student of College of Electrical 
and Information Engineering, Hunan University, Xiangtan 
411101, China. He is mainly engaged in the study of 
computer control technology. He is also with Hunan prov-
ince Cooperative Innovation Center for Wind Power 
Equipment and Energy Conversion, Xiangtan 411101, 
China (email: lishijun820404@qq.com). 

Weidong Li is a master of Powerchina Zhongnan En-
gineering Co. Ltd., Changsha 410014, China. He is mainly 
engaged in communication technology research. (e-mail: 
Lsj181627@qq.com).  

Submitted 03 September 2016 Published as resubmitted by the au-
thors 17 October 2016. 

 

iJOE ‒ Volume 12, Issue 10, 2016 17


	iJOE – Vol. 12, No. 10, 2016
	Wireless Sensor Network Multi-Hop Positioning Algorithm Based on Continuous Regression


