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Abstract—The sensor data in wireless sensor networks are 
continuously arriving in multiple, rapid, time varying, pos-
sibly unpredictable, unbounded streams, and no record of 
historical information is kept. These limitations make con-
ventional Database Management Systems and their evolu-
tion unsuitable for streams. Thereby there is a need to build 
a complete Data Streaming Management System (DSMS), 
which could process streams and perform dynamic continu-
ous query processing. In this paper, a framework for Adap-
tive Distributed Data Streaming Management System 
(ADDSMS) is presented, which operates as streams control 
interface between arrays of distributed data stream sources 
and end-user clients who access and analyze these streams. 
Simulation results show that the proposed method can thus 
improve overall system performance substantially. 

Index Terms—control system, data stream, deep learning, 
wireless sensor networks 

I. INTRODUCTION 
Sensor networks are sort of wireless networks that used 

for environment monitoring, target tracking, structural 
health monitoring, precision agriculture, active volcano 
monitoring, transportation, human activity monitoring, 
and other monitoring applications[1-2]. These sensor data 
behave very differently from traditional database sources: 
they are continuous arrival in multiple, rapid, time varying, 
possibly unpredictable, unbounded streams, and keeping 
no record of historical information[3]. 

The underlying framework provides stream manage-
ment and query processing mechanisms to support the 
online acquisition, management, processing, storage, and 
integration of data streams for distributed sensor networks. 
The rise of large-scale monitoring infrastructures such as 
wireless sensor networks poses distributed query pro-
cessing challenges; the queries must be processed inside 
the system in a distributed fashion so that the performance 
of the typically resource-constrained processing nodes is 
maximized[4]. 

Furthermore, to enable high throughput and low laten-
cies in the presence of high-rate data streams, the query 
processing operators must be placed adaptively across the 
network to minimize the data movement cost[5]. Three 
optimization levels are proposed to provide the maximum 
reduction in resources required to process data streams. 
This becomes possible due to the simultaneous use of 
different optimization levels and methods. 

The growth of electronic commerce and the widespread 
use of sensor networks have created the demand for online 
processing and monitoring applications Traditional query 

execution techniques, which assume finite persistent da-
tasets and aim for producing a one-time query result, be-
come largely inapplicable in this new stream paradigm 
due to the following reasons: 

The data streams are potentially infinite. Thus the exist-
ence of blocking operators in the query plan, such as 
group-by, may block query execution indefinitely because 
they need to see all input data before producing a result. 
Moreover, stately operators such as join may require infi-
nite storage resources to maintain all historical data for 
producing exact results. 

Data streams are continuously generated at query exe-
cution time. Meta knowledge about streaming data, such 
as data arrival patterns or data statistics, is largely unavail-
able at the initial query optimization phase. Therefore the 
initial processing decisions taken before query execution 
commences, including the query plan structure, operator 
execution algorithm and operator scheduling strategy, may 
not be optimal [6]. 

Stream environments are usually highly dynamic. For 
example, the data arrival rates may fluctuate dramatically. 
Moreover, as other queries are registered into or removed 
from the system, the computing resources available for 
processing may vary greatly. Hence an optimal query plan 
may become sub-optimal as it proceeds, requiring run-
time query plan restructuring and in some cases even 
across-machine plan redistribution. 

Resource management is a key challenge in a data 
stream management system, and it is a specific focus of 
our project [7-8]. There are a number of relevant resources 
in a DSMS: memory, computation, I/O if disk is used, and 
network bandwidth in a distributed DSMS. An important 
challenge in DBMSs has always been how to optimally 
utilize resources in order to maximize performance, while 
at the same time balancing other factors such as recovera-
bility and reliability. This remains true in DSMS, but often 
with a different emphasis. DSMS deals with push-based 
sources that often feed streams in through a continuous 
query registered with the system. Often, the usefulness of 
a result depends upon how quickly it was produced. This 
means that minimizing latency and maximizing through-
put are typically very important, making it highly desira-
ble to minimize CPU time and memory usage. Techniques 
to accomplish this range from shedding tuples in order to 
reduce load on the system, to scheduling operator queues 
in order to optimally reduce the amount of tuples needed 
by the system. Many of these techniques, such as load 
shedding, fundamentally affect the accuracy of the query 
by, in essence, changing it. Therefore, it is necessary to 
develop approximation techniques and measures of per-
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formance to balance performance versus accuracy and to 
give some guarantee of a certain level of accuracy. 

In a conventional DBMS, queries are run against da-
tasets which are finite and which do not change while the 
queries are executing. The goal of the query optimizer in 
these systems is usually to minimize the average time 
required to execute each query. In a streaming data system, 
however, queries run indefinitely, and they must process 
datasets that are constantly growing. So DSMS must have 
a new query optimizer which should be more adaptive to 
generate optimum query plan to minimize the execution 
cost of the queries. If the system does not schedule the 
execution of query operators intelligently, the backlog of 
tuples at some of the operators may exhaust the available 
memory [9]. As mentioned above, conserving memory is 
important in a stream system because it reduces the de-
mands on other system resources. Therefore, in a DSMS, 
intelligent operator scheduling is critical to effective re-
source management. 

 

II. OVERVIEW 
The first optimization level is sensor deployment. Sen-

sor deployment is a critical issue, as it affects the cost, the 
amount of data that needs to be processed, and detection 
capabilities of a wireless sensor network. Although many 
previous efforts have addressed this issue, most of them 
assume that the sensing field is an open space. In this 
work, we consider the sensing field as conditional regions. 
The sensor location problem (SLP) is a nonlinear non-
convex programming problem which aims to locate sen-
sors to monitor a constrained region. The objective is to 
determine the locations that will maximize the coverage. 
Three evolutionary algorithms, particle swarm optimiza-
tion (PSO), genetic algorithm (GA) and adaptive hybrid 
optimization (AHO) were used to solve the SLP. AHO 
uses fuzzy logic controller (FLC) as an intelligent switch-
ing technique agent between different types of optimiza-
tion techniques. Several variants (sensing patterns number 

of sensors and region constrains) were tested and com-
pared in terms of percentage coverage and computation 
cost. 

We can extract the following characteristics of data 
streams and processing requirements from its applications: 

A data stream is a potentially unbounded sequence of 
data items generated by an active data source. A single 
data item is called stream element. 

Stream elements arrive continuously at the system, 
pushed by the active data source. 

The system neither has control over the order in which 
stream elements arrive nor over their arrival rates. Stream 
rates and ordering could be unpredictable and vary over 
time. A data sources transmits every stream element only 
once. As stream elements are accessed sequentially, a 
stream element that arrived in the past cannot be retrieved 
unless it is explicitly stored. The unbounded size of a 
stream precludes a full materialization. 

Queries over data streams are expected to run continu-
ously and return new results as new stream elements ar-
rive. The ordering of stream elements may be implicit, i. e., 
defined by the arrival time at the system, or explicit if 
stream elements provide an application timestamp indicat-
ing their generation time. Complementary to the pure 
stream model, some applications need to combine data 
streams with stored data. 

Sensor nodes are deployed in a sensor field. The de-
ployment can be either done directly, by placing the sen-
sor nodes in specific positions, or randomly, e.g., via aeri-
al scattering in inaccessible terrains or disaster relief oper-
ations. Thus, the position of the sensor nodes in the sensor 
field may not be known in advance. After deployment, the 
sensor nodes perform some self-organization mechanisms 
to set up the network, e.g., by determining their neighbors 
and setting up routing tables. Self-organization is also 
required to adapt to changes of the network, e.g., caused 
by node failure due to energy exhaustion. 

 
Figure 1.  The basic framework of WSN 

During operation of the WSN, sensor nodes perform 
measurements of some physical phenomena, e.g., the 
temperature at a certain location. This data is sent to the 

base station (BSI, called sink, for further processing. Since 
the transmission range of a sensor is limited, the sink may 
IOT be directly reached. Thus, messages are forwarded in 
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a multichip communication to other sensor nodes which 
act as routers. Also sensor nodes may perform some oper-
ations on the data, e.g., data aggregation to decrease the 
amount of transmitted data. Since the transmission of data 
is much more cost-intensive than data processing, this is a 
commonly used approach to decrease the overall energy 
consumption. However, this may not be possible in all 
scenarios [10-11]. 

Figure 1 shows an example WSN. Multiple sensor 
nodes are deployed in a sensor field. The WSN autono-
mously performs measurements, e.g., following a certain 
time schedule, and send these measurements in regular 
intervals to the BS which send the collected data to the 
DSMS. The user generates a continuous query, e.g., 
"What is the highest temperature at the sensor field'?" 
using the DSMS. Then the user will get the query result 
continuously based on the sensors' data. 

 

III. METHOD AND ALGORITHM 
Data Sources: DBMSs operate on passive, persistent 

data sources, namely, finite relations stored on disk. In 
contrast, DSMSs operate on active data sources that con-
tinuously push data into the system as possibly unbounded, 
rapid, and transient data streams. Due to the stringent 
response time requirements of many streaming applica-
tions, data management primarily takes place in main 
memory, whereas DBMSs excessively make use of exter-
nal memory. Moreover, it is unfeasible for a DSMS to 
store an entire stream due to the unknown and potentially 
unbounded stream size. Even if Larger stream fragments 
were written to disk, operating on this vast amount of data 
would drop system performance drastically and, thus, 
would conflict with fast response times. At most, frag-
ments of query results may be stored in streaming applica-
tions whenever these need to support ad-hoc queries refer-
encing the past. Access to databases is also necessary if 
applications need to combine relations with streams. 

Query Types: While DBMSs execute one-time queries 
over persistent data, DSMSs execute continuous queries 
over transient data. Whenever the user issues a query, the 
DBMS computes and outputs the results for the current 
snapshot of the relations. After that, the processing for this 
query is completed. In a DSMS, however, queries are 
long-running; they remain active in the system for a long 
period of time. Once registered at the DSMS, a query 
generates results continuously on arrival of new stream 
elements until it is deregistered. 

Query Answers: DBMSs always produce exact query 
answers for a given query, whereas continuous queries 
usually provide approximate query answers. The reasons 
are: Many continuous queries are not computable with a 
finite amount of memory, e. g., the Cartesian product over 
two infinite streams. 

Some relational operators such as group-by are block-
ing because they must have seen the entire input before 
they are able to produce a result. The data can accumulate 
faster than the system can process the data. In general, 
high quality approximate answers are acceptable for users 
or applications. Moreover, recently arrived data is consid-
ered more accurate and useful. 

Processing Methodology: A DBMS employs a demand-
driven computation model, where processing is initiated 
when a query is issued. Tuples are typically read from 

relations in a pull-based manner using scan-based or in-
dex-based access methods. 

Conversely, query processing in a DSMS is data-driven 
because the query answer is computed incrementally on 
arrival of new stream elements. Hence, the underlying 
active data sources trigger processing in a push-based 
fashion. Without explicit buffering, DSMSs have to access 
stream elements sequentially in arrival order, whereas 
DBMSs have random access to tuples. 

Query Optimization: DBMSs optimize queries prior to 
execution. First, the optimizer generates a set of semanti-
cally equivalent query plans but with different perfor-
mance characteristics. Based on a cost model incorporat-
ing metadata about the underlying data and system condi-
tions, the optimizer then selects the plan with the lowest 
estimated costs. While this static optimization is adequate 
for one-time queries, the long-running nature of continu-
ous queries entails DSMSs requiring further query optimi-
zations at runtime to adapt to changing stream characteris-
tics and system conditions. Data distributions and arrival 
rates of streams and also query workload may vary over 
time. Without runtime adaptations, plan and system per-
formance may degrade significantly during the lifetime of 
a continuous query. 

The linear equation can be expressed into the following 
simplified forms: 
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These functions can be expressed in the following form: 
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The value with superscript of 1 represents the differ-
ence below: 
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Its local fractional Hilbert transform, denoted by 
, ( )H

xf x!  is defined by 
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Where x is real and the integral is treated as a Canchy 
principal value, that is, 
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Due to advances in wireless communications and elec-
tronics over the last few years, the development of net-
works of low-cost, low-power, multifunctional sensors has 
received increasing attention. These sensors are small in 
size and able to sense, process data, and communicate 
with each other, typically over an RF (radio frequency) 
channel. 

The well-known IEEE 802.11 family of standards was 
introduced in 1997 and is the most common wireless net-
working technology for mobile systems. It uses different 
frequency bands, for example, the 2.4-GHz band is used 
by IEEE 802.11b and IEEE 802.11 g, while the IEEE 
802.11 a protocol uses the 5-GHz frequency band. IEEE 
802.11 was frequently used in early wireless sensor net-
works and can still be found in current networks when 
bandwidth demands are high (e.g., for multimedia sen-
sors). However, the high-energy overheads of IEEE 
802.11-based networks make this standard unsuitable for 
low-power sensor networks. 

Typical data rate requirements in sensor networks are 
comparable to the bandwidths provided by dial-up mo-
dems, therefore the data rates provided by IEEE 802.11 
are typically much higher than needed. This has led to the 
development of a variety of protocols that better satisfy 
the networks' need for low power consumption and low 
data rates. For example, the IEEE 802.15.4 protocol has 
been designed specifically for short-range communica-
tions in low-power sensor networks and is supported by 
most academic and commercial sensor nodes. When the 
transmission ranges of the radios of all sensor nodes are 
large enough and the sensors can transmit their data di-
rectly to the base station, they can form a star topology. In 
this topology, each sensor node communicates directly 
with the base station using a single hop. However, sensor 
networks often cover large geographic areas and radio 
transmission power should be kept at a minimum in order 
to conserve energy; consequently, multi-hop communica-
tion is the more common case for sensor networks. 

 

IV. EXPERIMENT RESULT 
The data stream is limitless, and the arrival of the data 

is in individual (normal) or in batch (bursts). Data arrival 
mode is often described with arrival interval. The random 

arrival mode applied in the system appears very complex, 
and different probability distributions have to be adopted 
for different systems. Data stream model almost obeys the 
exponential distribution function; so our simulation will 
generate the data according this function using random 
numbers generation for the time intervals and generate the 
data in normal and burst mode to investigate the different 
impact of the two modes. 

Random numbers in simulation are never random. Ra-
ther, they are produced using deterministic algorithms. 
Algorithms take a seed value and perform some determin-
istic calculations on them to produce a random number 
and the next seed. Such algorithms and their implementa-
tions are called random number generators or RNGs, or 
sometimes pseudo random number generators or PRNGs 
to highlight their deterministic nature. 

Starting from the same seed, RNGs always produce the 
same sequence of random numbers. This is a useful prop-
erty and of great importance, because it makes simulation 
runs repeatable. RNGs produce uniformly distributed 
integers in some range, usually between 0 or 1 and 232 or 
so. Mathematical transformations are used to produce 
random variants from them that correspond to specific 
distributions, in our case it will be the exponential distri-
bution and manually configure seed values to use the same 
seeds for several simulation runs for ensuring a fare com-
parison between the different scheduling algorithms and 
the proposed algorithm. 

Queue is the memory schema which is used to store the 
data packet received from the data stream source, and to 
store the intermediate data between the operators. These 
queues use the FIFO as the plan to output the data packet 
with its arrival order to be the inputs for the next operator. 
In the proposed approach each queue has an embedded 
ready condition. This condition is tested after each data 
insertion in the queue. If the condition is met, queue will 
send a message to the scheduler to inform it that the bond-
ed operator has enough data and ready to be run. 

After receiving request message form the bonded op-
erator the queue send the stored data to the operator ac-
cording to the service discipline; individual means to send 
only one packet each request and bulk means to send all 
stored data packets. These modes differ from scheduling 
algorithm to another, as example FIFO uses individual 
mode to ensure the arrival order and the Chain uses the 
bulk mode to maximize the memory reducing. 

The clustering process will be done by the query ana-
lyzer as shown in the ADDSMS system design. So the 
execution engine in the query processor will have a num-
ber of threads that equal to the number of clusters resulted 
from the clustering phase. The adaptive manner of that 
scheduling schema resulting from reiterating calculates 
the operators' clusters during the query running either 
periodically or when operators' parameters have signifi-
cant changes. These changes result from the input stream 
rate changes which affect the cost model of the operators 
or the varying of data itself may resulting the change of 
the selectivity of the operators. The query analyzer will 
recalculate the clusters when it receives a new query plan 
from the distribution manger that may be different from 
the plan. 

The S-mean clustering method now is ready to apply. 
First the features of operators should be extracted in order 
to be used in the similarity measurements. Query execu-
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tion can be captured by a data flow diagram, where every 
tuple passes through a unique operator path. Thus queries 
can be represented as rooted trees. Over adequately large 
memory units, we can assume that if an operator with 
selectivity s operates on inputs that require one unit of 
memory, its output will require s units of memory. 

In all experiments only select, project and join operators 
are used. Join had been modeled as a sliding-window joins. 
The query plan consists of multiple queries with the same 
structure with different operator selectivity. Each query 
uses two data stream sources and applies two successive 
selections for each data stream. After that is applying a 
join operator with specific sliding window. The output 
from join operator will pass thought anther 2 filtering 
operators (select operators). Finally using a projection 
operator the output stream will be generated and sent to 
the data stream sink. Each query consists of 8 operators: 6 
selections, one projection and one join operator. During 
the experiment, each operator uses a fixed computing cost 
per tuple processing, the same cost is used for calculate 
the total cost model and then the clustering phase. Figure 
2 shows average memory requirements and latency for 40 
operators query plan in normal data mode while figure 3 
shows average memory requirements and latency for 40 
operators query plan in burst data mode. Average memory 
requirements and latency for 320 operators query plan in 
normal data mode is shown in figure 4 and average 
memory requirements and latency for 320 operators query 
plan in burst data mode is shown in figure 5. 

V. DISCUSSION 
In this experiment, the performance of the COS will be 

compared with two GTS algorithms, which are FIFO and 
Chain algorithms besides the OTS (multi-threaded). The 
experiment will inspect two metrics. The first is the data 
arrival modes, there are two modes normal mode and 
burst mode. The second metric is the number of the opera-
tor in the query plan we have run the simulation for differ-
ent number of operators starting from 10 operators until 
320 operators. Two examples will be shown only, one for 
small query plan (40 operators) and one for large query 
plan (320 operators). As a result we will have four set of 
testes (small query plan with normal data arrival, small 
query plan with burst data arrival, large query plan with 
normal data arrival and large query plan with burst data 
arrival). The four scheduling methods (GTS-FIFO, GTS-
Chain, OTS and COS) will be applied for all experiments 
in order to compare them. Note that GTS-FIFO, GTS-
Chain, OTS and COS algorithms will be mentioned in 
figures as FIFO, Chain, Multi-threads and clustered re-
spectively. 

In all experiments, the COS proves its superior perfor-
mance. As shown in figure 2 that illustrate the result for 
small query plan with normal data arrival, the COS have 
an average memory requirement almost as Chain and less 
than FIFO and multi-threaded and having a great im-
provement in the latency issue near to FIFO which have 
the worst memory requirement. In the case of small query 
plan with burst data arrival shown in figure 3, the COS 
proves its advantage in burst mode by having the lowest 
memory requirement and nearly the best latency. 

As shown in figure 4 that illustrate the result for large 
query plan with a normal data arrival, the COS had an 
average memory requirement less than Chain, FIFO and 
mufti-threaded  and  having  a  great  improvement  in  the  

 
Figure 2.  Average memory requirements and latency for 40 operators 

query plan in normal data mode 

 
Figure 3.  Average memory requirements and latency for 40 operators 

query plan in burst data mode 

 
Figure 4.  Average memory requirements and latency for 320 operators 

query plan in normal data mode 

 
Figure 5.  Average memory requirements and latency for 320 operators 

query plan in burst data mode 

latency issue better than all of them. In the case of the 
large query plan with the burst data arrival shown in figure 
5, the COS proves its advantage in burst mode by having 
the lowest memory requirement and nearly the best laten-
cy. For the small query plan, the power of the COS is not 
quite clear but in the large query plan the enormous per-
formance has been verified for normal and burst data 
modes. 
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VI. CONCLUSION 
The issue of continuous query processing was studied. 

The problem of operator scheduling in query processor 
has been focused on, with the goal of minimizing memory 
requirements and tuples latency. An adaptive operator 
scheduling COS is proposed. It clusters different operators 
into a number of groups based on its selectivity and com-
puting cost. S-mean is used to operators' clustering that 
does not require specification of clusters count. 

COS is Compared with the conventional scheduling 
methods FIFO, Chain and OTS.COS proved its high per-
formance for all situations compared with other tech-
niques. Furthermore, we showed that COS scheduling 
performs very well in terms of scalability and robustness. 
COS also able to use the memory and the computation 
resources in an efficiency manner that makes it continue 
works with limited resources, where other techniques lose 
their stability. 

As a final result the novel proposed technique provides 
adaptive, flexible, reliable, scalable and robust design for 
continuous query processor that can be the core for adap-
tive DSMS. 
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