
PAPER
DATA STREAM OF WIRELESS SENSOR NETWORKS BASED ON DEEP LEARNING

Data Stream of Wireless Sensor Networks Based
on Deep Learning

https://doi.org/10.3991/ijoe.v12i11.6232
Li Yue-jie

Ordos Institue of Technology, Inner Mongolia, China

Abstract—The sensor data in wireless sensor networks are
continuously arriving in multiple, rapid, time varying, pos-
sibly unpredictable, unbounded streams, and no record of
historical information is kept. These limitations make con-
ventional Database Management Systems and their evolu-
tion unsuitable for streams. Thereby there is a need to build
a complete Data Streaming Management System (DSMS),
which could process streams and perform dynamic continu-
ous query processing. In this paper, a framework for Adap-
tive Distributed Data Streaming Management System
(ADDSMS) is presented, which operates as streams control
interface between arrays of distributed data stream sources
and end-user clients who access and analyze these streams.
Simulation results show that the proposed method can thus
improve overall system performance substantially.

Index Terms—control system, data stream, deep learning,
wireless sensor networks

I. INTRODUCTION
Sensor networks are sort of wireless networks that used

for environment monitoring, target tracking, structural
health monitoring, precision agriculture, active volcano
monitoring, transportation, human activity monitoring,
and other monitoring applications[1-2]. These sensor data
behave very differently from traditional database sources:
they are continuous arrival in multiple, rapid, time varying,
possibly unpredictable, unbounded streams, and keeping
no record of historical information[3].

The underlying framework provides stream manage-
ment and query processing mechanisms to support the
online acquisition, management, processing, storage, and
integration of data streams for distributed sensor networks.
The rise of large-scale monitoring infrastructures such as
wireless sensor networks poses distributed query pro-
cessing challenges; the queries must be processed inside
the system in a distributed fashion so that the performance
of the typically resource-constrained processing nodes is
maximized[4].

Furthermore, to enable high throughput and low laten-
cies in the presence of high-rate data streams, the query
processing operators must be placed adaptively across the
network to minimize the data movement cost[5]. Three
optimization levels are proposed to provide the maximum
reduction in resources required to process data streams.
This becomes possible due to the simultaneous use of
different optimization levels and methods.

The growth of electronic commerce and the widespread
use of sensor networks have created the demand for online
processing and monitoring applications Traditional query

execution techniques, which assume finite persistent da-
tasets and aim for producing a one-time query result, be-
come largely inapplicable in this new stream paradigm
due to the following reasons:

The data streams are potentially infinite. Thus the exist-
ence of blocking operators in the query plan, such as
group-by, may block query execution indefinitely because
they need to see all input data before producing a result.
Moreover, stately operators such as join may require infi-
nite storage resources to maintain all historical data for
producing exact results.

Data streams are continuously generated at query exe-
cution time. Meta knowledge about streaming data, such
as data arrival patterns or data statistics, is largely unavail-
able at the initial query optimization phase. Therefore the
initial processing decisions taken before query execution
commences, including the query plan structure, operator
execution algorithm and operator scheduling strategy, may
not be optimal [6].

Stream environments are usually highly dynamic. For
example, the data arrival rates may fluctuate dramatically.
Moreover, as other queries are registered into or removed
from the system, the computing resources available for
processing may vary greatly. Hence an optimal query plan
may become sub-optimal as it proceeds, requiring run-
time query plan restructuring and in some cases even
across-machine plan redistribution.

Resource management is a key challenge in a data
stream management system, and it is a specific focus of
our project [7-8]. There are a number of relevant resources
in a DSMS: memory, computation, I/O if disk is used, and
network bandwidth in a distributed DSMS. An important
challenge in DBMSs has always been how to optimally
utilize resources in order to maximize performance, while
at the same time balancing other factors such as recovera-
bility and reliability. This remains true in DSMS, but often
with a different emphasis. DSMS deals with push-based
sources that often feed streams in through a continuous
query registered with the system. Often, the usefulness of
a result depends upon how quickly it was produced. This
means that minimizing latency and maximizing through-
put are typically very important, making it highly desira-
ble to minimize CPU time and memory usage. Techniques
to accomplish this range from shedding tuples in order to
reduce load on the system, to scheduling operator queues
in order to optimally reduce the amount of tuples needed
by the system. Many of these techniques, such as load
shedding, fundamentally affect the accuracy of the query
by, in essence, changing it. Therefore, it is necessary to
develop approximation techniques and measures of per-

22 http://www.i-joe.org

PAPER
DATA STREAM OF WIRELESS SENSOR NETWORKS BASED ON DEEP LEARNING

formance to balance performance versus accuracy and to
give some guarantee of a certain level of accuracy.

In a conventional DBMS, queries are run against da-
tasets which are finite and which do not change while the
queries are executing. The goal of the query optimizer in
these systems is usually to minimize the average time
required to execute each query. In a streaming data system,
however, queries run indefinitely, and they must process
datasets that are constantly growing. So DSMS must have
a new query optimizer which should be more adaptive to
generate optimum query plan to minimize the execution
cost of the queries. If the system does not schedule the
execution of query operators intelligently, the backlog of
tuples at some of the operators may exhaust the available
memory [9]. As mentioned above, conserving memory is
important in a stream system because it reduces the de-
mands on other system resources. Therefore, in a DSMS,
intelligent operator scheduling is critical to effective re-
source management.

II. OVERVIEW
The first optimization level is sensor deployment. Sen-

sor deployment is a critical issue, as it affects the cost, the
amount of data that needs to be processed, and detection
capabilities of a wireless sensor network. Although many
previous efforts have addressed this issue, most of them
assume that the sensing field is an open space. In this
work, we consider the sensing field as conditional regions.
The sensor location problem (SLP) is a nonlinear non-
convex programming problem which aims to locate sen-
sors to monitor a constrained region. The objective is to
determine the locations that will maximize the coverage.
Three evolutionary algorithms, particle swarm optimiza-
tion (PSO), genetic algorithm (GA) and adaptive hybrid
optimization (AHO) were used to solve the SLP. AHO
uses fuzzy logic controller (FLC) as an intelligent switch-
ing technique agent between different types of optimiza-
tion techniques. Several variants (sensing patterns number

of sensors and region constrains) were tested and com-
pared in terms of percentage coverage and computation
cost.

We can extract the following characteristics of data
streams and processing requirements from its applications:

A data stream is a potentially unbounded sequence of
data items generated by an active data source. A single
data item is called stream element.

Stream elements arrive continuously at the system,
pushed by the active data source.

The system neither has control over the order in which
stream elements arrive nor over their arrival rates. Stream
rates and ordering could be unpredictable and vary over
time. A data sources transmits every stream element only
once. As stream elements are accessed sequentially, a
stream element that arrived in the past cannot be retrieved
unless it is explicitly stored. The unbounded size of a
stream precludes a full materialization.

Queries over data streams are expected to run continu-
ously and return new results as new stream elements ar-
rive. The ordering of stream elements may be implicit, i. e.,
defined by the arrival time at the system, or explicit if
stream elements provide an application timestamp indicat-
ing their generation time. Complementary to the pure
stream model, some applications need to combine data
streams with stored data.

Sensor nodes are deployed in a sensor field. The de-
ployment can be either done directly, by placing the sen-
sor nodes in specific positions, or randomly, e.g., via aeri-
al scattering in inaccessible terrains or disaster relief oper-
ations. Thus, the position of the sensor nodes in the sensor
field may not be known in advance. After deployment, the
sensor nodes perform some self-organization mechanisms
to set up the network, e.g., by determining their neighbors
and setting up routing tables. Self-organization is also
required to adapt to changes of the network, e.g., caused
by node failure due to energy exhaustion.

Figure 1. The basic framework of WSN

During operation of the WSN, sensor nodes perform
measurements of some physical phenomena, e.g., the
temperature at a certain location. This data is sent to the

base station (BSI, called sink, for further processing. Since
the transmission range of a sensor is limited, the sink may
IOT be directly reached. Thus, messages are forwarded in

iJOE ‒ Volume 12, Issue 11, 2016 23

PAPER
DATA STREAM OF WIRELESS SENSOR NETWORKS BASED ON DEEP LEARNING

a multichip communication to other sensor nodes which
act as routers. Also sensor nodes may perform some oper-
ations on the data, e.g., data aggregation to decrease the
amount of transmitted data. Since the transmission of data
is much more cost-intensive than data processing, this is a
commonly used approach to decrease the overall energy
consumption. However, this may not be possible in all
scenarios [10-11].

Figure 1 shows an example WSN. Multiple sensor
nodes are deployed in a sensor field. The WSN autono-
mously performs measurements, e.g., following a certain
time schedule, and send these measurements in regular
intervals to the BS which send the collected data to the
DSMS. The user generates a continuous query, e.g.,
"What is the highest temperature at the sensor field'?"
using the DSMS. Then the user will get the query result
continuously based on the sensors' data.

III. METHOD AND ALGORITHM
Data Sources: DBMSs operate on passive, persistent

data sources, namely, finite relations stored on disk. In
contrast, DSMSs operate on active data sources that con-
tinuously push data into the system as possibly unbounded,
rapid, and transient data streams. Due to the stringent
response time requirements of many streaming applica-
tions, data management primarily takes place in main
memory, whereas DBMSs excessively make use of exter-
nal memory. Moreover, it is unfeasible for a DSMS to
store an entire stream due to the unknown and potentially
unbounded stream size. Even if Larger stream fragments
were written to disk, operating on this vast amount of data
would drop system performance drastically and, thus,
would conflict with fast response times. At most, frag-
ments of query results may be stored in streaming applica-
tions whenever these need to support ad-hoc queries refer-
encing the past. Access to databases is also necessary if
applications need to combine relations with streams.

Query Types: While DBMSs execute one-time queries
over persistent data, DSMSs execute continuous queries
over transient data. Whenever the user issues a query, the
DBMS computes and outputs the results for the current
snapshot of the relations. After that, the processing for this
query is completed. In a DSMS, however, queries are
long-running; they remain active in the system for a long
period of time. Once registered at the DSMS, a query
generates results continuously on arrival of new stream
elements until it is deregistered.

Query Answers: DBMSs always produce exact query
answers for a given query, whereas continuous queries
usually provide approximate query answers. The reasons
are: Many continuous queries are not computable with a
finite amount of memory, e. g., the Cartesian product over
two infinite streams.

Some relational operators such as group-by are block-
ing because they must have seen the entire input before
they are able to produce a result. The data can accumulate
faster than the system can process the data. In general,
high quality approximate answers are acceptable for users
or applications. Moreover, recently arrived data is consid-
ered more accurate and useful.

Processing Methodology: A DBMS employs a demand-
driven computation model, where processing is initiated
when a query is issued. Tuples are typically read from

relations in a pull-based manner using scan-based or in-
dex-based access methods.

Conversely, query processing in a DSMS is data-driven
because the query answer is computed incrementally on
arrival of new stream elements. Hence, the underlying
active data sources trigger processing in a push-based
fashion. Without explicit buffering, DSMSs have to access
stream elements sequentially in arrival order, whereas
DBMSs have random access to tuples.

Query Optimization: DBMSs optimize queries prior to
execution. First, the optimizer generates a set of semanti-
cally equivalent query plans but with different perfor-
mance characteristics. Based on a cost model incorporat-
ing metadata about the underlying data and system condi-
tions, the optimizer then selects the plan with the lowest
estimated costs. While this static optimization is adequate
for one-time queries, the long-running nature of continu-
ous queries entails DSMSs requiring further query optimi-
zations at runtime to adapt to changing stream characteris-
tics and system conditions. Data distributions and arrival
rates of streams and also query workload may vary over
time. Without runtime adaptations, plan and system per-
formance may degrade significantly during the lifetime of
a continuous query.

The linear equation can be expressed into the following
simplified forms:

(,) (,) 0L f x! !" =

2(,) ()L T! ! "# = # + (1)

In which,

() ()

()
() ()

ik i
T
k

T t
T

t !

" "
" =

" # "
,

0
=
0 0
ik! ,

(,)
(,)

(,)
ku x

f x
x
!

!
" !

= (2)

Consider delay, the L can be expressed as:
0 0

0
0 0
ijkl kij
T
ikl ik

C e
e !

=
"

! (3)

These functions can be expressed in the following form:

 0 1(x) (x)C C C= + 0 1(x) (x)e e e= +
0 1(x) (x)! ! != + 0 1(x) (x)! ! != + (4)

The value with superscript of 1 represents the differ-
ence below:

1 0C C C= ! , 1 0e e e= ! ,
1 0! ! != " , 1 0! ! != " (5)

And local fractional integral of ()f x defined by Eq.6.

()

1

j j0 0

1() ()()
(1)

1 lim ()()
(1)

b

a b a

j N

t j

I f t f t dt

f t t

!
!

!

!

!

= "

$
=

=
% +

= #
% +

&

'
 (6)

24 http://www.i-joe.org

PAPER
DATA STREAM OF WIRELESS SENSOR NETWORKS BASED ON DEEP LEARNING

Its local fractional Hilbert transform, denoted by
, ()H

xf x! is defined by

{ } ˆ() ()
1 () ()
(1) ()

H

R

H f t f x
f t dt
t - x

!
!

!
!!

=

=
" + #!

 (7)

Where x is real and the integral is treated as a Canchy
principal value, that is,

0

1 () ()
(1) ()

1 ()lim[()
(1) ()

1 () ()]
(1) ()

R
x

x

f t dt
t - x

f t dt
t - x

f t dt
t - x

!
!

"
!

!"

!
!

"

!

!

!

#

$
#%

%

+

& +

= +
& +

& +

'

'

'

!

 (8)

Due to advances in wireless communications and elec-
tronics over the last few years, the development of net-
works of low-cost, low-power, multifunctional sensors has
received increasing attention. These sensors are small in
size and able to sense, process data, and communicate
with each other, typically over an RF (radio frequency)
channel.

The well-known IEEE 802.11 family of standards was
introduced in 1997 and is the most common wireless net-
working technology for mobile systems. It uses different
frequency bands, for example, the 2.4-GHz band is used
by IEEE 802.11b and IEEE 802.11 g, while the IEEE
802.11 a protocol uses the 5-GHz frequency band. IEEE
802.11 was frequently used in early wireless sensor net-
works and can still be found in current networks when
bandwidth demands are high (e.g., for multimedia sen-
sors). However, the high-energy overheads of IEEE
802.11-based networks make this standard unsuitable for
low-power sensor networks.

Typical data rate requirements in sensor networks are
comparable to the bandwidths provided by dial-up mo-
dems, therefore the data rates provided by IEEE 802.11
are typically much higher than needed. This has led to the
development of a variety of protocols that better satisfy
the networks' need for low power consumption and low
data rates. For example, the IEEE 802.15.4 protocol has
been designed specifically for short-range communica-
tions in low-power sensor networks and is supported by
most academic and commercial sensor nodes. When the
transmission ranges of the radios of all sensor nodes are
large enough and the sensors can transmit their data di-
rectly to the base station, they can form a star topology. In
this topology, each sensor node communicates directly
with the base station using a single hop. However, sensor
networks often cover large geographic areas and radio
transmission power should be kept at a minimum in order
to conserve energy; consequently, multi-hop communica-
tion is the more common case for sensor networks.

IV. EXPERIMENT RESULT
The data stream is limitless, and the arrival of the data

is in individual (normal) or in batch (bursts). Data arrival
mode is often described with arrival interval. The random

arrival mode applied in the system appears very complex,
and different probability distributions have to be adopted
for different systems. Data stream model almost obeys the
exponential distribution function; so our simulation will
generate the data according this function using random
numbers generation for the time intervals and generate the
data in normal and burst mode to investigate the different
impact of the two modes.

Random numbers in simulation are never random. Ra-
ther, they are produced using deterministic algorithms.
Algorithms take a seed value and perform some determin-
istic calculations on them to produce a random number
and the next seed. Such algorithms and their implementa-
tions are called random number generators or RNGs, or
sometimes pseudo random number generators or PRNGs
to highlight their deterministic nature.

Starting from the same seed, RNGs always produce the
same sequence of random numbers. This is a useful prop-
erty and of great importance, because it makes simulation
runs repeatable. RNGs produce uniformly distributed
integers in some range, usually between 0 or 1 and 232 or
so. Mathematical transformations are used to produce
random variants from them that correspond to specific
distributions, in our case it will be the exponential distri-
bution and manually configure seed values to use the same
seeds for several simulation runs for ensuring a fare com-
parison between the different scheduling algorithms and
the proposed algorithm.

Queue is the memory schema which is used to store the
data packet received from the data stream source, and to
store the intermediate data between the operators. These
queues use the FIFO as the plan to output the data packet
with its arrival order to be the inputs for the next operator.
In the proposed approach each queue has an embedded
ready condition. This condition is tested after each data
insertion in the queue. If the condition is met, queue will
send a message to the scheduler to inform it that the bond-
ed operator has enough data and ready to be run.

After receiving request message form the bonded op-
erator the queue send the stored data to the operator ac-
cording to the service discipline; individual means to send
only one packet each request and bulk means to send all
stored data packets. These modes differ from scheduling
algorithm to another, as example FIFO uses individual
mode to ensure the arrival order and the Chain uses the
bulk mode to maximize the memory reducing.

The clustering process will be done by the query ana-
lyzer as shown in the ADDSMS system design. So the
execution engine in the query processor will have a num-
ber of threads that equal to the number of clusters resulted
from the clustering phase. The adaptive manner of that
scheduling schema resulting from reiterating calculates
the operators' clusters during the query running either
periodically or when operators' parameters have signifi-
cant changes. These changes result from the input stream
rate changes which affect the cost model of the operators
or the varying of data itself may resulting the change of
the selectivity of the operators. The query analyzer will
recalculate the clusters when it receives a new query plan
from the distribution manger that may be different from
the plan.

The S-mean clustering method now is ready to apply.
First the features of operators should be extracted in order
to be used in the similarity measurements. Query execu-

iJOE ‒ Volume 12, Issue 11, 2016 25

PAPER
DATA STREAM OF WIRELESS SENSOR NETWORKS BASED ON DEEP LEARNING

tion can be captured by a data flow diagram, where every
tuple passes through a unique operator path. Thus queries
can be represented as rooted trees. Over adequately large
memory units, we can assume that if an operator with
selectivity s operates on inputs that require one unit of
memory, its output will require s units of memory.

In all experiments only select, project and join operators
are used. Join had been modeled as a sliding-window joins.
The query plan consists of multiple queries with the same
structure with different operator selectivity. Each query
uses two data stream sources and applies two successive
selections for each data stream. After that is applying a
join operator with specific sliding window. The output
from join operator will pass thought anther 2 filtering
operators (select operators). Finally using a projection
operator the output stream will be generated and sent to
the data stream sink. Each query consists of 8 operators: 6
selections, one projection and one join operator. During
the experiment, each operator uses a fixed computing cost
per tuple processing, the same cost is used for calculate
the total cost model and then the clustering phase. Figure
2 shows average memory requirements and latency for 40
operators query plan in normal data mode while figure 3
shows average memory requirements and latency for 40
operators query plan in burst data mode. Average memory
requirements and latency for 320 operators query plan in
normal data mode is shown in figure 4 and average
memory requirements and latency for 320 operators query
plan in burst data mode is shown in figure 5.

V. DISCUSSION
In this experiment, the performance of the COS will be

compared with two GTS algorithms, which are FIFO and
Chain algorithms besides the OTS (multi-threaded). The
experiment will inspect two metrics. The first is the data
arrival modes, there are two modes normal mode and
burst mode. The second metric is the number of the opera-
tor in the query plan we have run the simulation for differ-
ent number of operators starting from 10 operators until
320 operators. Two examples will be shown only, one for
small query plan (40 operators) and one for large query
plan (320 operators). As a result we will have four set of
testes (small query plan with normal data arrival, small
query plan with burst data arrival, large query plan with
normal data arrival and large query plan with burst data
arrival). The four scheduling methods (GTS-FIFO, GTS-
Chain, OTS and COS) will be applied for all experiments
in order to compare them. Note that GTS-FIFO, GTS-
Chain, OTS and COS algorithms will be mentioned in
figures as FIFO, Chain, Multi-threads and clustered re-
spectively.

In all experiments, the COS proves its superior perfor-
mance. As shown in figure 2 that illustrate the result for
small query plan with normal data arrival, the COS have
an average memory requirement almost as Chain and less
than FIFO and multi-threaded and having a great im-
provement in the latency issue near to FIFO which have
the worst memory requirement. In the case of small query
plan with burst data arrival shown in figure 3, the COS
proves its advantage in burst mode by having the lowest
memory requirement and nearly the best latency.

As shown in figure 4 that illustrate the result for large
query plan with a normal data arrival, the COS had an
average memory requirement less than Chain, FIFO and
mufti-threaded and having a great improvement in the

Figure 2. Average memory requirements and latency for 40 operators

query plan in normal data mode

Figure 3. Average memory requirements and latency for 40 operators

query plan in burst data mode

Figure 4. Average memory requirements and latency for 320 operators

query plan in normal data mode

Figure 5. Average memory requirements and latency for 320 operators

query plan in burst data mode

latency issue better than all of them. In the case of the
large query plan with the burst data arrival shown in figure
5, the COS proves its advantage in burst mode by having
the lowest memory requirement and nearly the best laten-
cy. For the small query plan, the power of the COS is not
quite clear but in the large query plan the enormous per-
formance has been verified for normal and burst data
modes.

26 http://www.i-joe.org

PAPER
DATA STREAM OF WIRELESS SENSOR NETWORKS BASED ON DEEP LEARNING

VI. CONCLUSION
The issue of continuous query processing was studied.

The problem of operator scheduling in query processor
has been focused on, with the goal of minimizing memory
requirements and tuples latency. An adaptive operator
scheduling COS is proposed. It clusters different operators
into a number of groups based on its selectivity and com-
puting cost. S-mean is used to operators' clustering that
does not require specification of clusters count.

COS is Compared with the conventional scheduling
methods FIFO, Chain and OTS.COS proved its high per-
formance for all situations compared with other tech-
niques. Furthermore, we showed that COS scheduling
performs very well in terms of scalability and robustness.
COS also able to use the memory and the computation
resources in an efficiency manner that makes it continue
works with limited resources, where other techniques lose
their stability.

As a final result the novel proposed technique provides
adaptive, flexible, reliable, scalable and robust design for
continuous query processor that can be the core for adap-
tive DSMS.

REFERENCES
[1] H. Jing, “Node deployment algorithm based on perception model

of wireless sensor network,” International Journal of Automation
Technology,vol.9, no.3, pp. 210-215, April 2015.
https://doi.org/10.20965/ijat.2015.p0210

[2] Z. Zhang, D. He, L. Jing, et al., “ Robot Arm Trajectory Planning
Method,” Sensors & Transducers, pp. 1621-1626, 2014.

[3] H. Jing, “Routing optimization algorithm based on nodes density
and energy consumption of wireless sensor network,” Journal of
Computational Information Systems, vol. 11, no.14, pp. 5047-
5054, July 2015.

[4] L.S. Li, et al.,"Fractal-Based Outlier Detection Algorithm over
RFID Data Streams," International Journal of Online Engineer-
ing, vol. 12, no 01, pp. 35-41, January 2016.
https://doi.org/10.3991/ijoe.v12i1.5171

[5] Z. Lv, T. Yin, H. Song, et al., “Virtual Reality Smart City Based
on WebVRGIS,” IEEE Internet of Things Journal 2016.

[6] Z. Zhang, J. Tang, I. Huang, et al., “Research on Kinematics for
Inhibition Fluttering of Robot Arm,” Sensors & Transducers, pp.
161-171, 2013.

[7] L. Wang, et al., “Mechanics and energetics in tool manufacture
and use: a synthetic approach,” Journal of the Royal Society Inter-
face, pp. 111-114, 2014. https://doi.org/10.1098/rsif.2014.0827

[8] Z. Li, et al., "A low latency, energy efficient MAC protocol for
wireless sensor networks," International Journal of Distributed
Sensor Networks, vol. 10, no. 6, pp.1-9, 2015.
https://doi.org/10.1155/2015/946587

[9] J. Niu, et al., "R3E: Reliable Reactive Routing Enhancement for
Wireless Sensor Networks," IEEE Transactions on Industrial In-
formatics, vol. 10, no. 1, pp.784-794, 2014.
https://doi.org/10.1109/TII.2013.2261082

[10] C. Huang, Y. Tseng, and L. Lo, "The coverage problem in three-
dimensional wireless sensor networks," Journal of Interconnection
Networks, vol. 08, no. 03, pp. 3182-3186, 2015.

[11] H. Yang, et al., "Toward resilient security in wireless sensor
networks," Proceedings of the 6th ACM international symposium
on Mobile ad hoc networking and computing ACM, pp.34-45,
2015.

AUTHOR
Li Yue-jie is with the Ordos Institue of Technology,

Inner Mongolia, China (liyuejieli@tom.com).
The paper is supported by Inner Mongolia university research project

(No. NJZY16383) Submitted 09 September 2016. Published as resubmit-
ted by the authors 23 October 2016.

iJOE ‒ Volume 12, Issue 11, 2016 27

