
PAPER
MULTI ATTRIBUTE D-S EVIDENCE THEORY BASED OCC FOR SHARED-STATE SCHEDULING IN LARGE SCALE CLUSTER

Multi Attribute D-S Evidence Theory Based OCC
for Shared-State Scheduling in Large Scale

Cluster
https://doi.org/10.3991/ijoe.v12i12.6457

Libo He, Zhenping Qiang Wei Zhou, and Shaowen Yao
Yunnan University, Kunming City, China

Abstract—With the growth of big data problems, nowadays
the size of cloud-scale computing clusters is growing rapidly
to run complicated parallel processing jobs. To full utilize
cluster resources, the cluster management system is being
challenged by the scaling cloud size and the often more
complicated application requirements. Omega scheduling
software provides a flexible and scalable shared-state
scheduling architecture for large scale cluster scheduling.
One of its key ideas is using an optimistic concurrency con-
trol (OCC) algorithm to let parallel schedulers concurrently
make decisions. However, there are few studies exploring to
extend OCC for a shared-state scheduling architecture.
Furthermore, most of the traditional’ shared-state schedul-
ing architectures also use the same OCCs as Omega does. In
this paper, we present a multi attribute Dempster–Shafer
(D-S) evidence theory based OCC for shared-state schedul-
ing. This OCC adapts the multi attribute D-S evidence theo-
ry to help making conflict decisions for some scheduling
transactions. Experiments’ results show that our method
can obtain in some respects more optimized scheduling
results compared to coarse-grained conflict detection of
Omega.

Index Terms—large scale cluster scheduling; multi attribute
D-S evidence theory; optimistic concurrency control;
Shared-state scheduling

I. INTRODUCTION
With the coming of the era “Big Data”, nowadays tens

of thousands of machines are integrated into cloud infra-
structure to provide different services. However, the scal-
ing cluster size and more complicated application re-
quirements let efficient scheduling to be a challenge for
resource management system. Therefore, many sched-
ulers, such as Hadoop Scheduler [1], Mesos [2], YARN
[3], Omega [4], Sparrow [5] and Apollo [6], Borg [7],
Torcil [8], Hawk [9] have been emerged in recent years.

Omega, which is the first to propose the notion of
shared-state and introduces OCC into scheduling architec-
ture, is a successful implementation and its notion has
been used in the fellow shared-state schedulers. Yet there
is no centralized control in shared-state scheduling archi-
tecture, so global optimization is not workable in this
architecture. Priority preemptive mechanism is used by
some shared-state scheduling to ensure fairness between
jobs. However, there is few studies aim at how to optimize
same priority band jobs to achieve better performance.

Rather than using OCC to maintain serial equivalence,
we explore to use it to achieve some optimized goals.

Omega adopts two OCC methods: coarse-grained conflict
detection and fine-grained conflict detection. However,
for this case, both of them may not effective. So we pro-
pose a new OCC method to deal with this case.

The contributions of this paper are as follows:
1) We propose an OCC method, which based on

multiple attribute D-S evidence theory and OCC-Sacrifice
mechanisms, for shared-state scheduling architecture. To
the best of our knowledge, it is the first work to propose
and adopt this method in shared- state scheduling.

2) To achieve some optimized goals, we set up a
multi attribute model and use D-S theory to combine those
attribute to help OCC make conflict decision.

3) We rewrite the Omega’s simulator and imple-
ment this OCC in the simulator. And then we design a
series of experiments to evaluate it.

The rest of this paper is organized as fellows. Section II
presents background of our research. Section III describes
the mechanisms of our OCC method. We present and
analyze experiments results in section IV. Section V de-
scribes our future work.

II. BACKGROUND AND MOTIVATION
Scheduling in cluster has been extensively explored be-

fore. However, with the continuous scaling of cluster size,
monolithic schedulers such as Hadoop Scheduler cannot
meet the requirement of scalability. Two-level schedulers,
such as Yarn and Mesos, distributed schedulers, such as
Omega[4], Sparrow[5] and Apollo[6], Borg[7], Torcil[8],
and hybrid schedulers, such as Hawk[9], are proposed to
figure out some solutions to this problem. Due to decen-
tralized decisions, the distributed schedulers are more
favorable for efficient scheduling in large scale clusters.
Therefore, researchers and developers pay more attentions
to distributed schedulers recently.

Omega is a flexible and effective scheduling solution
for large scale computing cluster. Shared-state and OCC
are two key notions in Omega. Some fellow schedulers
also use the same notions as Omega. The purpose of using
OCC in shared-state scheduling is to maintain integrity of
cell state and serial equivalence [10, 11] of concurrent
schedule transactions. Since Kung and Robinson firstly
proposed Optimistic concurrency control in 1981 [12]. So
far, many OCC algorithms have been proposed for cen-
tralized database system and distributed database system
[13, 14, 15]. Some OCC algorithms, such as OCC-
Sacrifice [16], OCC-Broadcast Commit [17], MVCC

iJOE ‒ Volume 12, Issue 12, 2016 43

PAPER
MULTI ATTRIBUTE D-S EVIDENCE THEORY BASED OCC FOR SHARED-STATE SCHEDULING IN LARGE SCALE CLUSTER

(Multi Version Concurrency Control) [18] have been
widely used in many fields.

The OCCs which are adopted in Omega is fine-grained
conflict detection and coarse-grained conflict detection.
Coarse-grained conflict detection is similar to backward
validation and more suitable for users who have stricter
requirement about serial equivalence [10, 11]. Fine-
grained conflict detection is a completed relaxed method
which has no concurrency control mechanism.

When we use shared-state scheduling architecture and
these OCCs in practical application, we find some opti-
mized goals are hard to be realized. For example, we want
to reduce the number of abandoned jobs which only have
a little fraction of tasks have not been successful sched-
uled. Preemptive scheduling support higher priority tasks
to preempt the resource of lower priority task even the
scheduling transaction of higher priority tasks have been
validated as conflict by OCCs. In Google’s current re-
source management system, to eliminate preemption cas-
cades, production priority band tasks are disallowed to
preempt one another. Besides of preemptive scheduling,
we try to explore to find a solution to do some optimized
operation for the same priority band tasks.

The notion of OCC-Sacrifice inspires us. When two
concurrent scheduling transactions have been validated in
the same time, OCC-Sacrifice can let the less important
transaction to be conflict. Then, we can do optimize op-
eration for that part of scheduling transactions if we can
judge which transaction is important for our optimized
goals. However, due to the unpredictability of scheduling
decision, accurately judging the importance of scheduling
transactions in the same priority band is a challenge.

Since weight coefficients can be learned from workload
trace by learning algorithm. How to set the combination
rule for those weights is need carefully consideration.
From the experiences of previous research, compare to
simple linear weighted combination method, D-S evidence
theory is more efficient method to improve accuracy of
the weight [19, 20, 21]. So in this paper, we explore to
combine D-S evidence theory [22, 23, 21] and OCC-
Sacrifice to let our OCC achieved partly optimized goals
in some respects.

We will explain the detail mechanism of our method in
section III.

III. MULTIPLE ATTRIBUTE D-S FUSION BASED OCC

A. Multiple attribute fusion based on D-S evidence
theory

We suppose tasks have three attributes that influence
the importance of tasks. Then we assume the values of
those attributes are !!! !!! !! , which are normalized to
satisfy !! ! ! ! !. Furthermore, we assume the weight
coefficients degrees of those attributes are !!! !!! !!, and
let !! ! ! ! ! . We define !! ! !! ! !!!! ! !!!!!! and
combine !! by a kind of evidence combination rule which
is presented in formula (1).

When we use the formula 1, we should firstly judge if
those ! satisfy the following combination principles. It is
obvious that they can meet the first three principles. If two
attribute positively correlate to final attribute, their combi-
native value would be bigger than either of them. This
result satisfies the principle 4. Otherwise if two attribute
negatively correlate to final attribute, their combinative

final attribute value will equal or smaller than both of
them. The final value also meets the principle 5. If the !!
is -1 or 1, then the final value would also be 1. Then the
principle 6 could be also satisfied.

1. µµµµ !=!
2. () ()µµµµµµ !!=!!

3. 121 !"µµ

4. () 0,0,,max 212121 !!!" µµµµµµ

5. () 0,0,,min 212121 !!!" µµµµµµ

6. 1,1 121 ==! µµµ

µµµµµµ !++="

!
"

!
#

$

=%>%<

>%<%>&<%<

>%<%>&>%>'

=

)00(,0

)00()00(,1

)00()00(,1

sig

2121

122121

212121

µµµµ

µµµµµµ

µµµµµµ (1)

According to different attribute, the normalized meth-

ods of their value are different. In our simulation, the
requested resource and runtime of tasks are known in
advance. So, we preliminary consider three types of task
attribute in our experiments. The task attribute !! is
scheduled completion related. It can be calculated by the
number of successfully scheduled tasks in a job divided by
the total number of tasks in a job. The task attribute !! is
requested resource related and the task attribute !! is task
runtime related. Both of them can be calculated from the
statistic of historical data. For !!, we assume the max
resource (CPU) of the machine is !!"# and !!"# is the
current requested resource of a task. Then !! is normal-
ized by formula (2)

!
= (2)

For !!, we assume historical max duration value of
tasks in a job is!!!"#and min value is !!!"#. Then !! can
be normalized by formula 3.

!
!

= (3)

The parameter ! depends on the final goal of schedul-
ing. According to different application requirement, dif-
ferent value can be given.

B. Multiple attribute D-S fusion based OCC
In order to implement our method in Omega’s simula-

tor, except cell state, another global data object which
called placement array is used to record concurrent pre-
liminary placement claims information and validate con-
flict. The maintenance of placement array is like cell state
except the update operation. There is no concurrent update
operation for a claim in placement array, so it isn’t need
concurrency control method.

As showed in TABLE I, SC is shared cell state. PA is
placement array and !!"#$%& is task-machine placement
claims which created by schedulers through scheduling
algorithm. Those claims are added to placement array
after the end of schedule phase.

44 http://www.i-joe.org

PAPER
MULTI ATTRIBUTE D-S EVIDENCE THEORY BASED OCC FOR SHARED-STATE SCHEDULING IN LARGE SCALE CLUSTER

TABLE I.
 ALGORITHM 1

Input:

SC – shared cell state
PA – placement array
!!"#$%&– task-machine claims created by scheduling
algorithm

1 foreach Ci in Cclaims
2 Ci.importance = combine(p1,p2, p3,!!! !!! !!)
3 def condition1 = (Ci.sn != Ck.sn && Ci.ms ==Ck.ms

&&Ci.bv == true)
4 def condition2 = (Ci.sn != Ck.sn && Ci.ms ==Ck.ms

&&Ci.bv == false && Ci. importance < Ck. im-
portance)

5 if Ci.ms != SC.ms then
6 Cconflict.add (Ci)
7 SA.delete (Ci)
8 else if SA[m].filter(Ci, (condition1|| condition2)).size >0

then
9 Cconflict.add (Ci)

10 SA.delete (Ci)
11 else then
12 Cnonconflict.add (Ci)
13 SC.assignResources(Ci)
14 def fcobsolete = (Ck.tid !=Cj.tid)&&(Ck.ms<=Cj.ms)
15 Cobsolete =SA.filter(Cj,fcobsolete)
16 SA.delete(Cobsolete)
17 end if
18 end foreach

In shared-state scheduling, task-machine placement
claims are committed by schedulers in the form of transac-
tions. Whether those transactions succeed or not is decid-
ed by OCC which is Algorithm1 in this paper. Algorithm1
separately validates claims. For each claim Ci, it firstly
uses D-S evidence theory to combine multi attribute value
to one importance factor Ci.importance (line 1-2). Then define
two conflict validate conditions (line 3-4). The condition2
is used to let lower important transaction to be conflict
when more than two claims request the same resource
concurrently. By those validate conditions, claims are
judged as conflict or non-conflict (line 6-18). For conflict
claims, they are added to conflict set and their related
information is deleted from place array. On the other side,
for non-conflict claims, they are added to non-conflict set.
Their related tasks are assigned required resource and their
obsoleted information is deleted from place array.

IV. EXPERIMENTS EVALUATION
In this section, in order to evaluate the effectiveness of

our method, Omega’s lightweight simulator which is writ-
ten in Scale is been extended to implement our method.
The runtime environment of our simulation experiments is
JVM (openjdk-6-jdk) and Scala 2.9.0 based on a 64 bit
Ubuntu 10.04 Server. The hardware environment is setup
on one Intel(R) Core(TM) i7-3612QM CPU with total 4
cores, and 6GB of RAM.

Previous papers [24, 25 and 26] describe and analyze
some computing cluster’s trace. In our experiments, we
use the Google production trace to synthesize a production
priority band workload by considering some job’s charac-
teristics: the mean per-task resource, mean task duration,
the mean number of tasks per job, and job inter-arrival
time.

In order to simulate scheduling jobs in a cell, we con-
struct a cell environment as following: 10000 machines,
each machine have 4 CPU cores and 16 GB memory.

We use three metrics to evaluate our method:

1) Successful transactions fraction
In the paper, in order to find the influence of differ-

ent!!, we define successful transactions fraction as the
number of successful transaction divided by the total
number of transaction in a special value of !!!. For exam-
ple, every task has a scheduled completion related attrib-
ute !! which is defined as the number of successful
scheduled task divided by the total number of tasks in a
job. When!!!! ! !, the successful transactions fraction
which relate to !! is the number of successful task trans-
actions whose value of !! is zero divided by the total
number of transaction whose value of !! is zero.

2) Number of abandoned jobs
In application, it may have some unfortunate jobs

which will be never scheduled completely after a large
number of scheduling attempts due to conflicts. So in the
simulator, we limit any single job to 1,000 scheduling
attempts, and abandon job is the job which has not been
completely scheduled after 1000 tries or which has not
successfully been scheduled one task in 100 tries. Aban-
doned job number is the total number of abandoned jobs.

3) Job queuing time
In this paper, we define the job queuing time as the av-

erage time jobs takes to queue in pending queue till jobs
have been fully scheduled.

In our OCC method, a claim is validated as conflict un-
der the follow three cases:

Case1: the sequence number of the machine which is
required by the claim has been charged by other concur-
rent transaction.

Case2: Other concurrent transaction which requires the
same machine has been validated as non-conflict but has
not been committed. The sequence number is only
charged when transactions have been committed.

Case3: Other concurrent transaction which requires the
same machine has higher importance factor value.

In this paper, we mainly explore to optimize tasks in the

case3. As Figure 1 shown, in our experiment, less than 0.1
conflicts are in this case. When the jobs arrival rate is!!",
the proportion of case3 conflicts is relative bigger, so we
choose !" (1.0) as arrival rate of jobs in our fellow exper-
iments. The other parameters are set up as following:

We use 32 schedulers. The mean duration of tasks is
100.0s, and the mean number of tasks in a job is 100.

Figure 1. Case3 conflict fraction

iJOE ‒ Volume 12, Issue 12, 2016 45

PAPER
MULTI ATTRIBUTE D-S EVIDENCE THEORY BASED OCC FOR SHARED-STATE SCHEDULING IN LARGE SCALE CLUSTER

Figure 2 shows, compare to coarse-grained conflict de-

tection of Omega, our method obviously reduce the aban-
doned jobs number by giving 0.95 to weight coefficients
degrees of scheduled completion rate related attribute !!.

Figure 3 and Figure 4 shows, by using our method, the
successful transactions fraction and job queuing time is
improved by 2–3 times compare to coarse-grained conflict
detection.

This means through D-S fusion method to let tasks of
higher scheduled completion become more importance
may benefit for optimizing the global scheduling results.

On the other side, combine with the results of Figure 2,
Figure 3 and Figure 4, we can tentatively draw the conclu-
sion that our method achieve some optimized scheduling
goal rather than coarse-grained conflict detection of Ome-
ga.

The follow experiments are designed to explore the ef-

fect of giving different weight coefficients degrees to
different attribute and using different attribute model.

Figure 5(a) demonstrates that the successful transac-
tions fraction by giving the weight coefficients degree
!! ! !!!" to scheduled completion related attribute is
approximately 1.5 times by giving weight coefficients
degree!!! ! !!!. Figure 5(b) would seem to show that the
successful transactions fraction of tasks who’s requested
CPU cores bigger than 1.0 by giving the degree !! ! !!!"
to !! is smaller than by giving the degree !! ! !!! to !!.
Through our normalized formula, less demand for CPU of
a task, the value of !! is bigger. Therefore, by giving
bigger weight coefficients degree to!!!, the !! will more
affect the scheduling results.

So, Figure 5 indicates that by giving different weight
coefficients and through D-S combination rules, the
scheduling results are different. To further verify the
scalability of this mechanism, we extend to three attributes
in the following experiments.

Figure 2. Abandoned jobs number comparison

Figure 3. Successful transactions fraction comparison between coarse-
grained conflict detection and our method by setting 1= 0.95 and 2

=0.1

Figure 4. Job queuing time comparison between coarse-grained con-

flict detection and our method by setting 1= 0.95 and 2 =0.1

(a) Successful transactions fraction comparison under different sched-

uled completion of tasks

(b)Successful transactions fraction comparison under different requested

resource of tasks

Figure 5. Successful transactions fraction comparison by setting two
types of : 1= 0.95, 2 =0.1 and 1= 0.1, 2 =0.95

46 http://www.i-joe.org

PAPER
MULTI ATTRIBUTE D-S EVIDENCE THEORY BASED OCC FOR SHARED-STATE SCHEDULING IN LARGE SCALE CLUSTER

Figure 6 and Figure 7 demonstrates that the final suc-

cessful transactions fraction of scheduling transactions is
obviously charged by giving different weight coefficients
degree to different attribute. For completion rate related
attribute!!, our method performs best compared to other
setups we tried when we set !! ! !!!! !! ! !!!! !! ! !!!
(Figure 6(a)). For our task requested CPU related schedul-
ing goal, !! ! !!!! !! ! !!!! !! ! !!! is also the best
setup among others. As for our duration related scheduling
goal, !! ! !!!! !! ! !!!! !! ! !!! is the best. So how to
choose attribute and weight coefficients degree is more

closely related specific application and worthy further
research.

V. CONCLUSIONS AND FUTURE WORK
In this paper, our work explores how to through OCC to

achieve some optimized operation for the same production
band tasks. So we design and implement multiple attribute
D-S evidence theory based OCC in the simulator of Ome-
ga and compare to its coarse-grained conflict detection.
The evaluation of experiments verifies that it is a feasible
and effective method.

Our future work could usefully focus on those things:
In this paper, we explore to use multi attribute and D-S

combinational rule in OCC. However, except the sched-
uled completion related attribute can see obviously practi-
cal effect. The effect of other two attributes is hard to
evaluate. So, in the future, we will focus on research how
to better set attributes and get the proper weight coeffi-
cients degrees to let them better service to specific appli-
cation.

ACKNOWLEDGMENT

We would like to thank the authors of Omega for their
selflessness to public the simulator of Omega. This simu-
lator make up for our lack of experimental environment.

REFERENCES
[1] Zaharia, M., Borthakur,D., Sen Sarma,J., Elmeleegy, K., Shenker,

S.,and Stoica, I., “Delay scheduling: A simple technique for
achieving locality and fairness in cluster scheduling”, Proc. of the
5th European Conference on Computer Systems(EuroSys’10),
ACM, 2010,pp. 265–278. https://doi.org/10.1145/1755913.
1755940

[2] Hindman, B., Konwinski, A., Zaharia, M., Ghodsi ,A., Joseph, A.
D., Katz, R., Shenker, S. ,and Stoica, I., “ Mesos: A Platform for
Fine-Grained Resource Sharing in the Data Center”, Proc. of the
8th USENIX conference on Networked systems design and im-
plementation(NSDI’11), ACM,2011,pp.295-308.

[3] Vavilapalli, V. K., Murthy, A. C., Douglas, C., Agarwal, S.,
Konar, M., Evans, R., Graves, T. , Lowe, J., Shah, H. and Seth S.,
Saha, B., Curino, C., O’Malley, O., Radia, S. , Reed, B. and
Baldeschwieler. E., “Apache Hadoop YARN: yet another resource
negotiator”, Proc. of the 4th Symposium on Cloud, ACM, 2013,
pp.1-16. https://doi.org/10.1145/2523616.2523633

[4] Schwarzkopf, M., Konwinski, A., Abd-El-Malek, M. and Wilkes,
J., “Omega: flexible, scalable schedulers for large compute clus-
ters”, Proc. of the 8th ACM European Conference on Computer
Systems(EuroSys’ 13), ACM, 2013, pp.351-364.
https://doi.org/10.1145/2465351.2465386

[5] Ousterhout, K., Wendell, P., Zaharia, M., and Stoica., I., “Spar-
row: Distributed, low latency scheduling”, Proc. of the Twenty-
Fourth ACM Symposium on Operating Systems Princi-
ples(SOSP�13), ACM, 2013, pp.69–84. https://doi.org/10.1145/
2517349.2522716

[6] Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi, Jingren Zhou,
Zhengping Qian, Ming Wu, and Lidong Zhou, “Apollo: Scalable
and Coordinated Scheduling for Cloud-Scale Computing”, Proc.
of the 11th USENIX Symposium on Operating Systems Design
and Implementation(OSDI ’13), ACM, 2013 , pp.285-300.

[7] Verma, A., Pedrosa, L., Abd-El-Malek, M., Korupolu, M., Op-
penheimer, D., Tune, E., and Wilkes, J., “Large-scale cluster man-
agement at Google with Borg”, Proc. the Tenth European Confer-
ence on Computer Systems (EuroSys’15), ACM, 2015, pp.18.

[8] Delimitrou, C., Sanchez, D., and Kozyrakis, C., Tarcil: reconciling
scheduling speed and quality in large shared clusters, Proc. of the
Sixth ACM Symposium on Cloud Computing(SoCC ’15), ACM,
2015, pp. 97-110. https://doi.org/10.1145/2806777.2806779

[9] DELGADO, P., DINU, F., KERMARREC, A.-M., AND
ZWAENEPOEL, W, “Hawk: Hybrid datacenter scheduling”,

(a) Successful transactions fraction comparison under different sched-

uled completion of jobs

(b) Successful transactions fraction comparison under different request-

ed CPU of tasks

Figure 6. Successful transactions fraction comparison by setting four
types of

Figure 7. Successful transactions fraction comparison under different

runtime of tasks by setting four types of

iJOE ‒ Volume 12, Issue 12, 2016 47

PAPER
MULTI ATTRIBUTE D-S EVIDENCE THEORY BASED OCC FOR SHARED-STATE SCHEDULING IN LARGE SCALE CLUSTER

Proc. Of 2015 USENIX Annual Technical Conference (USENIX
ATC 15),SENIX Association,2015, pp. 499–510.

[10] PAPADIMITRIOU, C. H., “Serializability of concurrent updates”,
Journal of the ACM, ACM, vol. 26, n.4, 1979, pp.631-653.
https://doi.org/10.1145/322154.322158

[11] ESWARAN, K. P., GRAY, J. N., LORIE, R. A., and TRAIGER I.
L., “The notions of consistency and predicate locks in a database
system”, Communications of the ACM,ACM, vol.19, n.11,1976,
pp.: 624-633. https://doi.org/10.1145/360363.360369

[12] Kung, H.T., and Robinson, J. T., “On optimistic methods for
concurrency control”, ACM Transactions on Database Systems
(TODS), ACM, vol.6, n.2, 1981, pp.213–226.

[13] BERNSTEIN, P. A., AND GOODMAN, N, “Concurrency control
in distributed database systems”, ACM Computing Surveys,
ACM,vol.13, n.2, 1981, pp.185-221. https://doi.org/10.1145/3568
42.356846

[14] CHAN, A., FOX, S., LIN, W., NORI, A., AND RIES, D, “The
implementation of an integrated concurrency control and recovery
scheme”, Proc. of the ACM SIGMOD International Conference on
Management of Data, ACM, 1982, pp.184-191.

[15] ROBINSON, J, “Design of concurrency controls for transaction
processing systems“, Ph.D. dissertation, Department of Computer
Science, Carnegie-Mellon University, Pittsburgh, Pa., 1982.

[16] J.R.Haritsa, M.J.Caery, and M.Livny, “Dynamic Real-Time
Optimistic Concurrency Control”, Proc. of the IEEE Real-Time
Systems Symposium, IEEE, 1990, pp. 94-103.
https://doi.org/10.1109/real.1990.128734

[17] J.R.Haritsa, M.J.Carey and M.Livny. “On Being Optimistic About
Real-Time Constraints”, Proc. of the ACM Symposium on Princi-
ples of Database Systems, 331-343, Nashville, Tennessee, 1990
https://doi.org/10.1145/298514.298585

[18] REED, D, “Naming and synchronization in a decentralized com-
puter system”, Ph.D. dissertation, Dept. of Electrical Engineering
and Computer Science, MIT, Cambridge, Mass., 1978.

[19] Yao, J., Wu, C., Xie, X., & Qian, K., “A new method of infor-
mation decision-making based on D-S evidence theory”, Proc. of
IEEE International Conference on Systems Man & Cybernetics.
IEEE.2010. pp.1804-1811

[20] Li, G., Zou, H., & Yang, F, “Fuzzy ontology and fuzzy d-s evi-
dence theory based context modeling and uncertainty reasoning”,
Journal of Convergence Information Technology, vol.6, n.12,
2011, pp.185-193. https://doi.org/10.4156/jcit.vol6.issue12.24

[21] Fan, X., & Zuo, M. J,(2006). “Fault diagnosis of machines based
on d–s evidence theory part 1: d–s evidence theory and its im-
provement”. Pattern Recognition Letters, vol.27, n.5, 2006,
pp.366-376. https://doi.org/10.1016/j.patrec.2005.08.025

[22] .Zadeh, L., “A simple view of the Dempster-Shafer Theory of
Evidence and its implication for the rule of combination”, The Al
Magazine, Vol. 7, N. 2, 1986,pp. 85-90,.

[23] Walley, P., ”Statistical reasoning with imprecise probabilities”,
Applied Statistics,Vol.42, N.42,1993.

[24] CHEN, Y., GANAPATHI, A. S., GRIFFITH, R., and KATZ, R.
H., “Design insights for MapReduce from diverse production
workloads”, Tech. Rep. UCB/EECS–2012–17, UC Berkeley,Jan.
2012.

[25] KAVULYA, S., TAN, J., GANDHI, R., and NARASIMHAN, P.,
“An analysis of traces from a production MapReduce cluster”,
Proc. of 10th IEEE/ACM International Conference on
(CCGrid’10), IEEE, 2010, pp. 94–103.

[26] REISS, C., TUMANOV, A., GANGER, G. R., KATZ, R. H., and
KOZUCH, M. A., Heterogeneity and dynamicity of clouds at
scale: Google trace analysis. Proc. of the Third ACM Symposium
on Cloud Computing(SoCC’12), ACM, 2012, pp.1-13.

AUTHORS
Libo He with the School of Information Science and

Engineering in Yunnan University, No.2 Cuihu North Rd,
Kunming City, China (22013000170@mail.ynu.edu.cn)

Zhenping Qiang with the School of Information Sci-
ence and Engineering in Yunnan University, No.2 Cuihu
North Rd, Kunming City, China (qzp@swfu.edu.cn)

Wei Zhou with the School of Software in Yunnan Uni-
versity, No.2 Cuihu North Rd, Kunming City, China
(zwei@ynu.edu.cn)

Shaowen Yao with the School of Software in Yunnan
University, No.2 Cuihu North Rd, Kunming City, China
(yaosw@ynu.edu.cn)
This work is supported by National Natural Science Foundation of China
(No. 61363021, No. 61540061). Submitted 26 October 2016. Published
as resubmitted by the authorts 27 November 2016.

48 http://www.i-joe.org

