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Abstract—With the growth of big data problems, nowadays 
the size of cloud-scale computing clusters is growing rapidly 
to run complicated parallel processing jobs. To full utilize 
cluster resources, the cluster management system is being 
challenged by the scaling cloud size and the often more 
complicated application requirements. Omega scheduling 
software provides a flexible and scalable shared-state 
scheduling architecture for large scale cluster scheduling. 
One of its key ideas is using an optimistic concurrency con-
trol (OCC) algorithm to let parallel schedulers concurrently 
make decisions. However, there are few studies exploring to 
extend OCC for a shared-state scheduling architecture. 
Furthermore, most of the traditional’ shared-state schedul-
ing architectures also use the same OCCs as Omega does. In 
this paper, we present a multi attribute Dempster–Shafer 
(D-S) evidence theory based OCC for shared-state schedul-
ing. This OCC adapts the multi attribute D-S evidence theo-
ry to help making conflict decisions for some scheduling 
transactions. Experiments’ results show that our method 
can obtain in some respects more optimized scheduling 
results compared to coarse-grained conflict detection of 
Omega. 

Index Terms—large scale cluster scheduling; multi attribute 
D-S evidence theory; optimistic concurrency control; 
Shared-state scheduling 

I. INTRODUCTION 
With the coming of the era “Big Data”, nowadays tens 

of thousands of machines are integrated into cloud infra-
structure to provide different services. However, the scal-
ing cluster size and more complicated application re-
quirements let efficient scheduling to be a challenge for 
resource management system. Therefore, many sched-
ulers, such as Hadoop Scheduler [1], Mesos [2], YARN 
[3], Omega [4], Sparrow [5] and Apollo [6], Borg [7], 
Torcil [8], Hawk [9] have been emerged in recent years.  

Omega, which is the first to propose the notion of 
shared-state and introduces OCC into scheduling architec-
ture, is a successful implementation and its notion has 
been used in the fellow shared-state schedulers. Yet there 
is no centralized control in shared-state scheduling archi-
tecture, so global optimization is not workable in this 
architecture. Priority preemptive mechanism is used by 
some shared-state scheduling to ensure fairness between 
jobs. However, there is few studies aim at how to optimize 
same priority band jobs to achieve better performance.  

Rather than using OCC to maintain serial equivalence, 
we explore to use it to achieve some optimized goals. 

Omega adopts two OCC methods: coarse-grained conflict 
detection and fine-grained conflict detection. However, 
for this case, both of them may not effective. So we pro-
pose a new OCC method to deal with this case.  

The contributions of this paper are as follows: 
1) We propose an OCC method, which based on 

multiple attribute D-S evidence theory and OCC-Sacrifice 
mechanisms, for shared-state scheduling architecture. To 
the best of our knowledge, it is the first work to propose 
and adopt this method in shared- state scheduling. 

2) To achieve some optimized goals, we set up a 
multi attribute model and use D-S theory to combine those 
attribute to help OCC make conflict decision.  

3) We rewrite the Omega’s simulator and imple-
ment this OCC in the simulator. And then we design a 
series of experiments to evaluate it. 

The rest of this paper is organized as fellows. Section II 
presents background of our research. Section III describes 
the mechanisms of our OCC method. We present and 
analyze experiments results in section IV. Section V de-
scribes our future work. 

II. BACKGROUND AND MOTIVATION 
Scheduling in cluster has been extensively explored be-

fore. However, with the continuous scaling of cluster size, 
monolithic schedulers such as Hadoop Scheduler cannot 
meet the requirement of scalability. Two-level schedulers, 
such as Yarn and Mesos, distributed schedulers, such as 
Omega[4], Sparrow[5] and Apollo[6], Borg[7], Torcil[8], 
and hybrid schedulers, such as Hawk[9], are proposed to 
figure out some solutions to this problem. Due to decen-
tralized decisions, the distributed schedulers are more 
favorable for efficient scheduling in large scale clusters. 
Therefore, researchers and developers pay more attentions 
to distributed schedulers recently.  

Omega is a flexible and effective scheduling solution 
for large scale computing cluster. Shared-state and OCC 
are two key notions in Omega. Some fellow schedulers 
also use the same notions as Omega. The purpose of using 
OCC in shared-state scheduling is to maintain integrity of 
cell state and serial equivalence [10, 11] of concurrent 
schedule transactions. Since Kung and Robinson firstly 
proposed Optimistic concurrency control in 1981 [12]. So 
far, many OCC algorithms have been proposed for cen-
tralized database system and distributed database system 
[13, 14, 15]. Some OCC algorithms, such as OCC-
Sacrifice [16], OCC-Broadcast Commit [17], MVCC 
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(Multi Version Concurrency Control) [18] have been 
widely used in many fields. 

The OCCs which are adopted in Omega is fine-grained 
conflict detection and coarse-grained conflict detection. 
Coarse-grained conflict detection is similar to backward 
validation and more suitable for users who have stricter 
requirement about serial equivalence [10, 11]. Fine-
grained conflict detection is a completed relaxed method 
which has no concurrency control mechanism.  

When we use shared-state scheduling architecture and 
these OCCs in practical application, we find some opti-
mized goals are hard to be realized. For example, we want 
to reduce the number of abandoned jobs which only have 
a little fraction of tasks have not been successful sched-
uled. Preemptive scheduling support higher priority tasks 
to preempt the resource of lower priority task even the 
scheduling transaction of higher priority tasks have been 
validated as conflict by OCCs. In Google’s current re-
source management system, to eliminate preemption cas-
cades, production priority band tasks are disallowed to 
preempt one another. Besides of preemptive scheduling, 
we try to explore to find a solution to do some optimized 
operation for the same priority band tasks. 

The notion of OCC-Sacrifice inspires us. When two 
concurrent scheduling transactions have been validated in 
the same time, OCC-Sacrifice can let the less important 
transaction to be conflict. Then, we can do optimize op-
eration for that part of scheduling transactions if we can 
judge which transaction is important for our optimized 
goals. However, due to the unpredictability of scheduling 
decision, accurately judging the importance of scheduling 
transactions in the same priority band is a challenge.  

Since weight coefficients can be learned from workload 
trace by learning algorithm. How to set the combination 
rule for those weights is need carefully consideration. 
From the experiences of previous research, compare to 
simple linear weighted combination method, D-S evidence 
theory is more efficient method to improve accuracy of 
the weight [19, 20, 21]. So in this paper, we explore to 
combine D-S evidence theory [22, 23, 21] and OCC-
Sacrifice to let our OCC achieved partly optimized goals 
in some respects.  

We will explain the detail mechanism of our method in 
section III. 

III. MULTIPLE ATTRIBUTE D-S FUSION BASED OCC 

A. Multiple attribute fusion based on D-S evidence 
theory 

We suppose tasks have three attributes that influence 
the importance of tasks. Then we assume the values of 
those attributes are !!! !!! !! , which are normalized to 
satisfy !! ! ! ! !. Furthermore, we assume the weight 
coefficients degrees of those attributes are  !!! !!! !!, and 
let !! ! ! ! ! . We define !! ! !! ! !!!! ! !!!!!!  and 
combine !! by a kind of evidence combination rule which 
is presented in formula (1).  

When we use the formula 1, we should firstly judge if 
those ! satisfy the following combination principles. It is 
obvious that they can meet the first three principles. If two 
attribute positively correlate to final attribute, their combi-
native value would be bigger than either of them. This 
result satisfies the principle 4. Otherwise if two attribute 
negatively correlate to final attribute, their combinative 

final attribute value will equal or smaller than both of 
them. The final value also meets the principle 5. If the  !!  
is -1 or 1, then the final value would also be 1. Then the 
principle 6 could be also satisfied. 
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According to different attribute, the normalized meth-

ods of their value are different. In our simulation, the 
requested resource and runtime of tasks are known in 
advance. So, we preliminary consider three types of task 
attribute in our experiments. The task attribute !!  is 
scheduled completion related. It can be calculated by the 
number of successfully scheduled tasks in a job divided by 
the total number of tasks in a job. The task attribute  !!  is 
requested resource related and the task attribute  !! is task 
runtime related. Both of them can be calculated from the 
statistic of historical data. For !!, we assume the max 
resource (CPU) of the machine is  !!"# and !!"# is the 
current requested resource of a task. Then !! is normal-
ized by formula (2) 

!
=                                         (2) 

For !!, we assume historical max duration value of 
tasks in a job is!!!"#and min value is !!!"#. Then !! can 
be normalized by formula 3.  

!
!

=                                         (3) 

The parameter ! depends on the final goal of schedul-
ing. According to different application requirement, dif-
ferent value can be given. 

B. Multiple attribute D-S fusion based OCC 
In order to implement our method in Omega’s simula-

tor, except cell state, another global data object which 
called placement array is used to record concurrent pre-
liminary placement claims information and validate con-
flict. The maintenance of placement array is like cell state 
except the update operation. There is no concurrent update 
operation for a claim in placement array, so it isn’t need 
concurrency control method. 

As showed in TABLE I, SC is shared cell state. PA is 
placement array and !!"#$%&  is task-machine placement 
claims which created by schedulers through scheduling 
algorithm. Those claims are added to placement array 
after the end of schedule phase. 
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TABLE I.   
 ALGORITHM 1 

Input: 

SC – shared cell state 
PA – placement array 
!!"#$%&– task-machine claims created by scheduling 
algorithm 

1 foreach Ci in Cclaims 
2 Ci.importance = combine(p1,p2, p3,!!! !!! !!) 
3 def condition1 = (Ci.sn != Ck.sn && Ci.ms ==Ck.ms 

&&Ci.bv == true) 
4 def condition2 = (Ci.sn != Ck.sn && Ci.ms ==Ck.ms 

&&Ci.bv == false && Ci. importance < Ck. im-
portance)

5 if Ci.ms != SC.ms then 
6         Cconflict.add (Ci) 
7         SA.delete (Ci) 
8 else if SA[m].filter(Ci, (condition1|| condition2)).size >0 

then 
9 Cconflict.add (Ci) 

10 SA.delete (Ci) 
11 else then 
12 Cnonconflict.add (Ci) 
13 SC.assignResources(Ci) 
14 def   fcobsolete  =  (Ck.tid !=Cj.tid )&&(Ck.ms<=Cj.ms) 
15 Cobsolete =SA.filter(Cj,fcobsolete) 
16 SA.delete(Cobsolete) 
17 end if 
18 end foreach 

In shared-state scheduling, task-machine placement 
claims are committed by schedulers in the form of transac-
tions. Whether those transactions succeed or not is decid-
ed by OCC which is Algorithm1 in this paper. Algorithm1 
separately validates claims. For each claim Ci, it firstly 
uses D-S evidence theory to combine multi attribute value 
to one importance factor Ci.importance (line 1-2). Then define 
two conflict validate conditions (line 3-4). The condition2 
is used to let lower important transaction to be conflict 
when more than two claims request the same resource 
concurrently. By those validate conditions, claims are 
judged as conflict or non-conflict (line 6-18). For conflict 
claims, they are added to conflict set and their related 
information is deleted from place array. On the other side, 
for non-conflict claims, they are added to non-conflict set. 
Their related tasks are assigned required resource and their 
obsoleted information is deleted from place array. 

IV. EXPERIMENTS EVALUATION 
In this section, in order to evaluate the effectiveness of 

our method, Omega’s lightweight simulator which is writ-
ten in Scale is been extended to implement our method. 
The runtime environment of our simulation experiments is 
JVM (openjdk-6-jdk) and Scala 2.9.0 based on a 64 bit 
Ubuntu 10.04 Server. The hardware environment is setup 
on one Intel(R) Core(TM) i7-3612QM CPU with total 4 
cores, and 6GB of RAM. 

Previous papers [24, 25 and 26] describe and analyze 
some computing cluster’s trace. In our experiments, we 
use the Google production trace to synthesize a production 
priority band workload by considering some job’s charac-
teristics: the mean per-task resource, mean task duration, 
the mean number of tasks per job, and job inter-arrival 
time. 

In order to simulate scheduling jobs in a cell, we con-
struct a cell environment as following: 10000 machines, 
each machine have 4 CPU cores and 16 GB memory. 

We use three metrics to evaluate our method: 

1) Successful transactions fraction 
In the paper, in order to find the influence of differ-

ent!!, we define successful transactions fraction as the 
number of successful transaction divided by the total 
number of transaction in a special value of !!!. For exam-
ple, every task has a scheduled completion related attrib-
ute !!  which is defined as the number of successful 
scheduled task divided by the total number of tasks in a 
job. When!!!! ! !, the successful transactions fraction 
which relate to !! is the number of successful task trans-
actions whose value of  !! is zero divided by the total 
number of transaction whose value of  !! is zero.  

2) Number of abandoned jobs 
In application, it may have some unfortunate jobs 

which will be never scheduled completely after a large 
number of scheduling attempts due to conflicts. So in the 
simulator, we limit any single job to 1,000 scheduling 
attempts, and abandon job is the job which has not been 
completely scheduled after 1000 tries or which has not 
successfully been scheduled one task in 100 tries. Aban-
doned job number is the total number of abandoned jobs. 

3) Job queuing time  
In this paper, we define the job queuing time as the av-

erage time jobs takes to queue in pending queue till jobs 
have been fully scheduled.  

In our OCC method, a claim is validated as conflict un-
der the follow three cases: 

Case1: the sequence number of the machine which is 
required by the claim has been charged by other concur-
rent transaction.  

Case2: Other concurrent transaction which requires the 
same machine has been validated as non-conflict but has 
not been committed. The sequence number is only 
charged when transactions have been committed.  

Case3: Other concurrent transaction which requires the 
same machine has higher importance factor value. 

 
In this paper, we mainly explore to optimize tasks in the 

case3. As Figure 1 shown, in our experiment, less than 0.1 
conflicts are in this case. When the jobs arrival rate is!!", 
the proportion of case3 conflicts is relative bigger, so we 
choose  !" (1.0) as arrival rate of jobs in our fellow exper-
iments. The other parameters are set up as following: 

We use 32 schedulers. The mean duration of tasks is 
100.0s, and the mean number of tasks in a job is 100. 

 
Figure 1. Case3 conflict fraction 
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Figure 2 shows, compare to coarse-grained conflict de-

tection of Omega, our method obviously reduce the aban-
doned jobs number by giving 0.95 to weight coefficients 
degrees of scheduled completion rate related attribute !!.

 

 

Figure 3 and Figure 4 shows, by using our method, the 
successful transactions fraction and job queuing time is 
improved by 2–3 times compare to coarse-grained conflict 
detection.  

This means through D-S fusion method to let tasks of 
higher scheduled completion become more importance 
may benefit for optimizing the global scheduling results.  

On the other side, combine with the results of Figure 2, 
Figure 3 and Figure 4, we can tentatively draw the conclu-
sion that our method achieve some optimized scheduling 
goal rather than coarse-grained conflict detection of Ome-
ga. 

 
The follow experiments are designed to explore the ef-

fect of giving different weight coefficients degrees to 
different attribute and using different attribute model.  

Figure 5(a) demonstrates that the successful transac-
tions fraction by giving the weight coefficients degree 
!! ! !!!"  to scheduled completion related attribute is 
approximately 1.5 times by giving weight coefficients 
degree!!! ! !!!. Figure 5(b) would seem to show that the 
successful transactions fraction of tasks who’s requested 
CPU cores bigger than 1.0 by giving the degree !! ! !!!" 
to !! is smaller than by giving the degree !! ! !!! to !!. 
Through our normalized formula, less demand for CPU of 
a task, the value of  !! is bigger. Therefore, by giving 
bigger weight coefficients degree to!!!, the !! will more 
affect the scheduling results. 

So, Figure 5 indicates that by giving different weight 
coefficients and through D-S combination rules, the 
scheduling results are different. To further verify the 
scalability of this mechanism, we extend to three attributes 
in the following experiments.  

 
Figure 2. Abandoned jobs number comparison 

 
Figure 3. Successful transactions fraction comparison between coarse-
grained conflict detection and our method by setting 1= 0.95 and 2 

=0.1 

 
Figure 4. Job queuing time comparison between coarse-grained con-

flict detection and our method by setting 1= 0.95 and 2 =0.1 

 
(a) Successful transactions fraction comparison under different sched-

uled completion of tasks 
 

 
(b)Successful transactions fraction comparison under different requested 

resource of tasks 

Figure 5. Successful transactions fraction comparison by setting two 
types of : 1= 0.95, 2 =0.1 and 1= 0.1, 2 =0.95
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Figure 6 and Figure 7 demonstrates that the final suc-

cessful transactions fraction of scheduling transactions is 
obviously charged by giving different weight coefficients 
degree to different attribute. For completion rate related 
attribute!!, our method performs best compared to other 
setups we tried when we set !! ! !!!! !! ! !!!! !! ! !!! 
(Figure 6(a)). For our task requested CPU related schedul-
ing goal, !! ! !!!! !! ! !!!! !! ! !!!  is also the best 
setup among others. As for our duration related scheduling 
goal, !! ! !!!! !! ! !!!! !! ! !!! is the best. So how to 
choose attribute and weight coefficients degree is more 

closely related specific application and worthy further 
research.

V. CONCLUSIONS AND FUTURE WORK 
In this paper, our work explores how to through OCC to 

achieve some optimized operation for the same production 
band tasks. So we design and implement multiple attribute 
D-S evidence theory based OCC in the simulator of Ome-
ga and compare to its coarse-grained conflict detection. 
The evaluation of experiments verifies that it is a feasible 
and effective method. 

Our future work could usefully focus on those things: 
In this paper, we explore to use multi attribute and D-S 

combinational rule in OCC. However, except the sched-
uled completion related attribute can see obviously practi-
cal effect. The effect of other two attributes is hard to 
evaluate. So, in the future, we will focus on research how 
to better set attributes and get the proper weight coeffi-
cients degrees to let them better service to specific appli-
cation. 
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