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Abstract—The first step in designing a controller for a manipulating arm is 
to determine its configuration, which means, analyzing the main components 
that make up the mechanism. A manipulating arm is composed of joints, mo-
tors, sensors and other elements, which are linked to conform the different de-
grees of freedom (generalized coordinates: prismatic, rotational or a combina-
tion of both, which is presented as the most unusual), which allow the calcula-
tion of the dynamic model implemented to obtain the control specifications [1]. 
In this paper, the calculation of a controller by sliding modes for a manipulator 
arm with 4 rotational degrees of freedom will be done, showing the respective 
results and conclusions at the end. 

Keywords—Arm Manipulator, Articulated Pair, Degrees of freedom, Dynamic 
Model, Generalized Coordinates, Sliding Modes Controller 

Nomenclature 
Degrees of freedom DOF 
Derivative of error ! 
Double derivative of error ! 
Electrical Motor Constant !!  
Error e 
Generalize Coordinates ! 
Generalize Coordinates of Acceleration  ! 
Generalize Coordinates of Speed ! 
Gravitational Forces Vector ! !  
Inertial matrices ! !  
Vector of centrifugal and Coriolis forces ! !! !  
Vector Friction Forces ! !  

1 Introduction 

The physical composition of a manipulating arm is similar to the anatomy of a hu-
man arm, so that, on certain occasions, the elements which constitute it are referenced 
using terms such as hip, shoulder, elbow, and wrist. A manipulator is defined as a set 
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of rigid bodies interconnected by prismatic or rotational junctions which generate 
relative movements of the elements that constitute it, producing displacements in the 
final link of the kinematic chain [1]. These mechanisms are implemented for risky 
applications that have an may have a negative impact on human health, so the im-
portance of designing control algorithms for their functioning is evidenced [2]. 

For the design of the controller, it is necessary to obtain the kinematic and dynamic 
models that define the behavior of the mechanism´s movement. The kinematic model 
describes the Cartesian space of the articulated trajectories located at the end of the 
open kinematic chain and is defined as the study base of the dynamics in which the 
actual forces in that system are considered [3,4 ]. Therefore, a dynamic model is cal-
culated to analyze the necessary forces to cause movement. In other words, the torque 
required to manipulate the position and velocity variables in the hybrid platform [5]. 

This work is organized as follows: Section 1 describes the physical characteristics 
of the mechanism to be implemented, as well as the model that defines the required 
torque by each of the joints, in addition to the required speed behavior for the motor´s 
movement. In section 2, the results of the controller development by the sliding mode 
method are presented. Section 3 presents the conclusions of the study. 

2 Manipulator Structure 

Figure 1 shows the configuration of the manipulator to be implemented, where a 4 
DOF arm is described. It should be noted that the center of mass for the links is locat-
ed in the middle of each one of them. 

 
Fig. 1. Four DOF Manipulator Arm. 
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2.1 Inverse Dynamics of manipulators 

After specifying the manipulating arm’s configuration, the lagrange formulation of 
equation (1) is implemented, which determines the dynamic model for the calculation 
of the torque to be controlled in each one of the links, taking into account its mass, 
length, inertia, viscous friction and gravitational force [6]. 

 
! ! ! ! ! ! ! !! ! ! ! ! ! ! !  (1) 

 
For ease of implementation, the dynamic model must be expressed as shown in 

equation (2), in order to obtain a more adequate configuration when calculating and 
simulating the controller to be designed. 
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2.2 Motor Specifications 

To obtain the necessary variables for the controller design, speed and torque speci-
fications given by the Dynamixel Pro M54-60-S250-R motors in Figure 2, which will 
be located in each of the mechanism´s DOF, must be considered. From there, it is 
obtained that the motor´s top speed is 28.8 RPM, so that in figure 3, the system’s most 
efficient torque is determined and thus, the control variable’s saturation is defined. 

 
Fig. 2. Dynamixel Pro M54-60-S250-R 
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Fig. 3. Velocity, efficiency and current vs. Torque plots 

2.3 Sliding Mode Controller 

The sliding modes controller´s principle consists in designing a sliding surface, re-
sponsible for forcing the system´s variables so that their behavior resembles such 
surface. Then, the dynamic system´s control law is determined by the sliding surface 
equation in (8) and its derivative in (9) [7]. It is necessary to take into account that       
! ! ! ! ! !"!!!

!"
. The same concept will be considered for the generalized coordinates 

!!!! 
 

! ! ! ! !!! ! !! !"# (8) 

! ! ! ! !!! ! !!! (9) 
 
After defining the sliding surface, it is important to ensure the existence of the slid-

ing surface itself. For this, it is taken into account that the states of the system slide on 
the surface without being affected by parametric variations or external perturbations 
[8]. 

To obtain the control law, equation (1), which determines the dynamics of the ma-
nipulator, is retaken up with its control variable !  as shown in (10). 
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(10) 

Equations (11) to (19) show the solution required to obtain the final control law de-
scribed in equation (20), where ! in equation (12) equals 0. 
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2.4 Controller Parameters 

For the calculation of the controller, we propose as !! simulation constants, those 
arranged in equation (25) and !!, those arranged in equation (26); obtained from the 
definition of a second order Ruth polynomy with a damping coefficient ! = 0.9 and a 
sampling time of 0.15, 0.17, 0.13, and 0.05 for the four joints, respectively. The sam-
pling time variation is defined to eliminate the error generated by the sum of the ac-
cumulated inertial effects in each of the joints of the kinematic chain.  
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(25) 

3 Analysis of Results and Discussion 

To verify the controller’s operation, random paths that ensure that the mechanism 
passes through its center of rotation are presented. In figures 4 through 7, the behav-
iors generated by the sliding modes controller are obtained. In them, the blue signal 
shows the desired behavior and the violet signal shows the obtained behavior. 

Then, the speed behavior generated by the controller in Figures (8) to (11) is ob-
tained with the same signals as those used for the position behavior. 
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Fig. 4. Sliding Mode Control in joint 1 

 
Fig. 5. Sliding Mode Control in joint 2 

 
Fig. 6. Sliding Mode Control in joint 3 

 
Fig. 7. Sliding Mode Control in joint 4 

 

 

Fig. 8. Sliding Mode speed in joint 1 

 

Fig. 9. Sliding Mode speed in joint 2 

 

Fig. 10. Sliding Mode speed in joint 3 

 

Fig. 11. Sliding Mode speed in joint 4 

3.1 Error analysis  

After obtaining the behavior in position and speed, the calculation of errors gener-
ated in each of the joints is dona. The errors produced by the sliding modes controller 
are described in Figure (12) and (13). 
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Fig. 12. Sliding Mode Position Error 

 
Fig. 13. Sliding Mode speed Error 

A numerical analysis is made, using the mean square error formulation, since it in-
corporates the estimation variance, as shown in table 1. 

Then, the power required by the controller to cause the previously defined move-
ments is calculated. In figure (14), the required power by each joint is observed, while 
in figure (15) its energy is obtained. 

Finally, Table 2 shows the numerical values for the maximum power required by 
each joint 

Table 1.  Sliding Mode Joint errors 

Joint Mse Position Mse Speed 
1 0,8591 19,0019 
2 0,3462 7,5928 
3 0,1768 3,8629 
4 0 0 

 
Fig. 14. Sliding mode power 

 
Fig. 15. Sliding mode consumption  
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Table 2.  Sliding mode power consumption 

Joint Power Consumption (W.s) 
1 5,682 
2 5,638 
3 8,702 
4 0 

 

4 Conclusions 

The previously obtained results indicate that the sliding mode controller shows 
tolerated behavior for precision applications, since the errors are not minimal with 
values of 0.8591 for articulation 1, 0.3462 for articulation 2, 0.1768 for articulation 3 
and 0 for articulation 4. The above shows that the best trajectories are obtained when 
the control law is applied directly on the dynamic model of the system, that is, on the 
inertia, cetrifugal force, coriolis and friction matrix arrays. 

For speed, we obtain errors of 19.0019 for articulation 1, 7.5928 for articulation 2, 
3.8629 for articulation 3, and 0 for articulation 4, with a minimum of power required 
as observed in Table 2. 
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