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Abstract—Semi-automatic 2D-to-3D conversion is a promising solution to 
3D stereoscopic content creation. However, the depth continuous transition be-
tween user marked neighboring regions will be lost when user scribbles are 
sparse. To help solve this problem, a piecewise-continuity regularized low-rank 
matrix recovery method is developed. Our approach is based on the fact that a 
depth-map can be decomposed into a low-rank matrix and an outlier term ma-
trix. First, an initial dense depth-map is interpolated from the user scribbles us-
ing matting Laplacian scheme under the assumption that depth-map is piece-
wise-continuous. Second, a piecewise-continuity constrained low-rank recovery 
model is developed to remove outliers which are introduced by the interpola-
tion. Experimental comparisons with existing algorithms show that our method 
demonstrates significant advantage over depth continuous transition between 
neighboring regions. 

Keywords—2D-to-3D conversion, depth estimation, piecewise-continuity, 
low-rank, sparse interpolation 

1 Introduction 

With the development of 3D display technology, increasingly kinds of 3D electron-
ic products, such as television, mobile phone, projector, are appearing in the ordinary 
people's life [1]. However, there is little 3D content to be played on these devices. 
Most videos and images are still in 2D. Thus, it is urgent need for 2D to 3D conver-
sion which can generate 3D content from existing 2D images/videos. 

The main challenge of 2D to 3D conversion is how to retrieve the depth infor-
mation from 2D images/videos which lost in the capture process. Existing 2D to 3D 
conversion methods can be generally divided into two categories: automatic and semi-
automatic ones. The automatic conversion methods rely on different kinds of depth 
cues to generate depth-maps. Since the relationships between these cues and depth are 
nonlinear, current automatic methods usually make some global assumptions about 
the scene. Once the assumptions do not hold, depth errors will appear. Therefore, the 
accuracy of depth-maps generated by the automatic methods still can't meet the 3D 
display demand. 
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Semi-automatic methods are possible to get higher quality depth-maps as they 
combine both depth cues and manual operations. Therefore, in recent years, many 
semi-automatic schemes have been proposed. However, if the user scribbles are 
sparse, existing methods are hard to capture the depth continuous change between 
neighboring regions, which will lead to visual fatigue. Surprisingly, there are few 
semi-automatic works addressing the issue. 

We tackle the issue by formulating the depth estimation as a low-rank matrix re-
covery problem. Our work is motivated by the recent matrix completion to the colori-
zation problem [2]. Unfortunately, the method in [2] cannot be applied to depth esti-
mation directly. An additional regularization term should be introduced to the method 
so as to improve the matrix completion accuracy. Since the color image can be con-
verted to the monochrome image by a transform matrix, in [2], an extra regulation 
term can be added to the matrix completion using the relation. However, no transform 
matrix is available which converts the estimated depth-map to the input image. To fix 
the problem, we assume that two neighboring pixels should have similar depth if their 
colors are similar. We formalize this premise into a local depth consistency interpola-
tion which is motivated by matting Laplacian method [3]. Then, we develop a discon-
tinuity constrained low-rank matrix recovery approach to refine the interpolated re-
sult. 

Similar to StereoBrush [4], in our method, the user brushes sparse scribbles on an 
input color image where lighter intensities indicate closer from the camera and vice 
versa. By formulating our problem into a discontinuity constrained low-rank matrix 
recovery, depth transition between neighboring regions will be more continuous while 
preserving depth boundaries. In particular, the main contributions of our work are: 

! To the best of our knowledge, our work is the first to formulate semi-automatic 
2D-to-3D conversion as a low-rank matrix recovery problem. The low-rank matrix 
representation can refine depth-maps by removing the outlier term. This initializes 
to applying recent advances in low-rank methods to the 2D-to-3D conversion prob-
lem. 

! Low-rank matrix recovery can work when enough samples are available. Inspired 
by matting Laplacian method [3], we develop a local depth consistency interpola-
tion method to provide the ample samples from the sparse user scribbles. 

! We develop a quadratic cost regularized low-rank matrix recovery model to re-
move depth outliers while preserving object boundaries. 

The rest of the papers is organized as follows. Recent semi-automatic depth es-
timation methods are introduced in section 2. We formulate the 2D-to-3D conversion 
as a low-rank matrix recovery problem and devise a discontinuity preserving smooth 
term to improve the performance of low-rank method in section 3. Section 4 gives a 
detailed explanation of the steps of our low-rank method. In section 5, we derive the 
augmented Lagrange multiplier (ALM) algorithm [5] to solve our low-rank matrix 
recovery problem. We demonstrate the performance of our method in comparison 
with related semi-automatic depth estimation approaches in section 6. 
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2 Related works 

In this section, only related semi-automatic 2D-to-3D conversion approaches are 
discussed. A more detailed review of related methods can be found in [6]. Wu et al. 
[7] use the interactive segmentation tool to extract the object from the background, 
and then the depth information is assigned to the segmented objects and the back-
ground respectively. However, the interactive segmentation is cumbersome, and not 
easier than the manual 2D-to-3D conversion. To make the interactive segmentation 
easier, Aksoy et al. [8] over-segment image into regions with geometrical convexity 
and intensity homogeneity, and then the regions are merged with respect to the user 
scribbles, geometry and intensity constraints. Once segmentation is done, user is 
again required to mark strokes on the segmented objects indicating relative depth 
ordering. In [9], Guttmann et al. propose a segmentation like depth estimation method 
where each user label is not considered as a separate object but as a separate depth. 
User scribbles are marked on a few key frames to assign some desired depth values. 
Next, these scribbles are used to train the support vector machine (SVM) classifiers 
using the scale-invariant feature transform (SIFT) for each key frame. Then, those 
pixels with high confidence are tuned for the particular depth by the SVM classifier. 
Finally, a linear system is solved via least squares to get the rest of depth. The system 
combines the initial user constraints, spatial and time smoothness constraints. Solving 
of this system is equivalent to solving the random walks (RW) problem. 

The issue with [9] is the computation complexity which requires SIFT feature ex-
traction and SVM classifiers training to get the final depth-map. In [10], the SVM 
classifiers are removed and only user scribbles are used to generate the initial depth-
map. The final depth-map is interpolated by the RW segmentation framework devel-
oped by Grady [11]. The limitation with [10] is that the resulting depth-map object 
boundaries are lost due to the smoothing properties of RW. To solve the problem, in 
[12], Phan combines RW [11] and Graph Cuts (GC) [13] which utilizes both the 
smoothing properties of RW and the strong object boundaries provided by GC. The 
initial depth-map is generated by GC. Then, edges in RW are weighted by the initial 
depth-map. The combination cleans up object boundaries while maintaining smooth 
gradients in RW. However, when user scribbles are sparse, the combination cannot 
capture the continuous depth transition between neighboring regions. To improve 
depth quality at object boundaries, in [14], Yuan et al. incorporate nonlocal neighbors 
into the RW model. 

Recently, in [15], Zhuo et al. use matting Laplacian method [3] to perform sparse 
interpolation for depth from defocus from a single image. The interpolated defocus 
map by matting Laplacian can capture the continuous change of the depth. It is the 
desired property which guarantees continuous transition between neighboring regions 
in depth-map. However, the issue with matting Laplacian is that the texture details in 
the input image will be introduced to the depth-map during the interpolation process. 
Inspired by the recent success of low-rank methods application in image processing, 
e.g., colorization [2], image restoration [16], texture repairing [17] and etc., we devel-
op a depth estimation approach combining matting Laplacian and low-rank method 
which captures the continuous depth changes while removing texture details intro-
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duced by matting Laplacian scheme. We notice that Lu et al. [18] also apply low-rank 
constraints on depth enhancement. The differences between our and their method are: 
(1) Lu et al. [18] assume RGB-D patches lie in a low-dimensional subspace and we 
apply low-rank regularization to the whole depth-map; (2) the focus of [18] is depth-
map completion and our problem is sparse-to-dense depth propagation in semi-
automatic 2D to 3D conversion. 

3 Problem formulation 

First of all, we provide here some notations used throughout the paper. Scalars are 
non-bold, vectors are bold lowercase and matrices are bold capital. We assume that 
matrices are stored in column-major order and one-based indexing is used.   h w!"A !
means its row is h , width is w  and all elements are real numbers. The (i, j)-th entry 
of a matrix A  is denoted by ijA . Similarly, ia is the i-th component of a vectora . 

The conjugate transpose of A  is !A  and similarly for vectors. The matrices trace is 
denoted by Tr. The Frobenius norm of a matrix A  is denoted by FA , the 0l  norm by 

0A  (i.e., a total number of non-zero elements inA ), the 1l  norm by 1A , and the 

standard inner product between two matrices A  and B  by , ( )Tr !=A B A B  (
2 ,F =A A A ). The shrinkage operator for a matrix A  is defined as 

{ }( ) sgn( ) max ,0S! != "A A A!  where the (i, j)-th entry of sgn( )A  is 1 if 0ijA ! , oth-

erwise is -1; the (i, j)-th entry of !"A  is 
ijA !" ; ! is the Hadamard product. The 

singular shrinkage operator for a matrix A  is denoted by ( ) max{ ,0} TD! != "#A U V  

where T! =U V A. cP  is a reshape operator which converts a matrix to a column vec-

tor, and 1
cP
!  is the inverse operator. For instance, if ( )cP=a A  where N!a ! , 

h w!"A ! and N h w= ! , then 1( )cP
!=A a  and ( 1)j h i ija A! " + = . 

Suppose that we are given a color image 3h w! !"I !  and a partially user labeled 
image h w!"S ! . The semi-automatic 2D-to-3D conversion problem is first to obtain a 
sparse initial depth-map h w

s
!"D ! with user labeled image S , then to estimate a full 

depth-map h w
f

!"D !  which best approximates the underlying true depth of I . 

This is an ill posed problem since we have no knowledge about the underlying true 
depth, and the evaluation of best approximation can be in many ways. To well define 
the problem, prior knowledge should be introduced. We consider the problem under 
two assumptions: 

Assumption 1. The depth-maps are piecewise-continuous. 
Assumption 2. The depth-maps are low-rank. 
The Assumption 1 is reasonable because depth-maps are uniform, and depth dis-

continuity only appears on objects boundaries. The Assumption 2 derives from the 
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fact that any image can be effectively approximated by a low-rank matrix plus a 
sparse matrix [19]. With Assumption 1, we obtain an initial estimated depth-map 
using local depth consistency interpolation which is motivated by the matting Lapla-
cian method [3]. Then, a refined depth-map is extracted from the initial depth-map by 
formulating depth estimation as a low-rank matrix recovery problem with the As-
sumption 2. Further, to thoroughly remove the texture details introduced by interpola-
tion, we add a discontinuity constrained smooth regularization term to the low-rank 
method. 

4 Method 

The workflow of the proposed method is showed in Fig.1. In our approach, the us-
er masks on the input color image, generating a scribbles map covering on original 
image indicating the user desired depth. The masked intensity or color is lighter, the 
depth value is bigger. Then, we use image subtraction techniques to extract the sparse 
depth hypothesis. To get the initial dense depth-map, we apply matting Laplacian 
method [3] to perform sparse interpolation with the Assumption 1. The main idea of 
matting Laplacian scheme is that depth can be represented as a linear function of 
colors in a small window. 

 
Fig. 1. The flowchart of the proposed method for semi-automatic 2D-to-3D conversion 

While the initial depth from matting Laplacian scheme can capture continuous 
changes between neighboring regions, it introduces texture details from input color 
image to the depth-map. These texture details damage the depth uniformity inside the 
same object which will lead to visual fatigue. Since depth-map is generally piecewise-
continuous, there are strong correlations between neighboring regions, we can repre-
sent depth-map by low-rank matrix. Then, the texture details are supposed to be the 
outlier term. However, the texture details are not sparse, the typical low-rank method 
alone cannot remove the texture thoroughly. Therefore, we introduce a constrained 
term to the low-rank method. The constrained term smooths depth in low gradient 
regions while preserving depth in high gradient regions. Generally, the gradient is low 
inside the objects and is high at object boundaries. Thus, the constrained term can 
smooth depth while preserving object boundaries. We call it discontinuity preserving 
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constrained term. With help of the constrained term, the low-rank method can remove 
most texture details in interpolated depth-map while preserving object boundaries. 

With the recovered depth from the input color image, we can now apply depth im-
age based rendering (DIBR) to create a new view for 3D stereoscopic display. Ana-
glyph image has been a popular representation for stereoscopic 3D. To generate ana-
glyph image, the input image is given a red hue, and the image synthesized by DIBR 
is given a cyan hue. The anaglyph image is the combination of the two hue images. 

4.1 Local depth consistency interpolation 

In [20], Cand`es et al. shows the number of sampled entries must be bigger than a 
constant, then the low-rank matrix can be perfectly recovered with high probability. 
Thus, in [2], for each unlabeled pixel, monochrome intensity affinities are used to find 
all its neighboring labeled pixels, and then it is labeled with the weighted sum of the 
neighbors' labels. However, in 2D-to-3D conversion, user scribbles are sparse and 
separated. The simple neighboring labels propagation will not work in our case. To 
propagate the sparse user labels to the entire image, we assume that pixels with simi-
lar colors should have roughly similar depth. Namely, depth distributions are local 
consistency. The local depth consistency interpolation is motivated by the matting 
Laplacian method [3]. Its intuition is that depth can be represented as a linear function 
of image colors in a small window. 

The depth interpolation problem is formulated as: 

min{ ( ) ( )}
f

T T
f f f s s f sw+ ! " !

d
d Ld d d d d                                         (1) 

Where the parameter w  balances the relative influence between user scribbles and 
color similarity. ( )s c sP=d D  where its i-th entry is set to user input depth if pixel i is 
at user labeled region, otherwise it is set to zero. ( )f c fP=d D . L  is the N N!  mat-
ting Laplacian matrix, and 

s!  is a N N!  diagonal matrix whose (i, i)-th entry is 1 if 
pixel i is labeled by the user. 

To solve the problem (1), let its derivative w.r.t 
fd  be zero, and the following 

linear system equation is obtained: 

( )s f s sw w+ ! = !L d d                                                               (2) 

The optimal 
fd  can be obtained by solving (2) using the conjugate gradient algo-

rithm. The final interpolated depth-map is obtained by 1( )f c fP!=D d . 

4.2 Low-rank matrix recovery 

Let h w!"D !  be the refined depth-map, h w!"E !  the outlier term. We assume 
that D  is low-rank and E  is sparse. Formally, we obtain D  by solving the problem, 
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0,
min{ ( ) },  s.t. frank !+ + =
D E

D E D E D                                               (3) 

The problem in (3) with rank and 0l  norm minimization is NP-hard. In [18], 
Cand`es et al. prove that the nuclear norm minimization is the tightest convex relaxa-
tion of the NP-hard rank minimization problem. In [21], Elad demonstrates that 0l  

norm minimization problem can be approximated by the convex 1l  norm minimiza-
tion. Thus, the problem in (3) can be relaxed into the following problem: 

* 1,
min{ },  s.t. f!+ + =
D E

D E D E D                                                       ( ) 

To preserve the depth discontinuity while removing texture details introduced by 
sparse interpolation, we add an extra regularization term to the low-rank matrix re-
covery problem. By introducing the regularized term to low-rank method, Assump-
tion 1 and Assumption 2 are used together. Thus, we formulate the problem in (4) to a 
more robust form as follows: 

* 1,
min{ ( ) },  s.t. 

2
T T T

x x x y y y f
!

"+ + # + # + =
D E

D E d G G G G d D E D         (5) 

Where ( )cP=d D . xG  and yG  are N N!  bi-diagonal matrices to represent gra-

dient operator on N pixels along the horizontal and vertical directions, respectively. 
Thus, all the elements of xG  and yG  are equal to 1 on the main diagonal, all the 

elements of xG  are equal to -1 on the h-th diagonal below the main diagonal, all the 

elements of yG  are equal to -1 on the first diagonal below the main diagonal, and all 

other elements of xG  and yG  are equal to 0. x! and y!  are N N!  diagonal ma-

trices to indicate the input image gradients magnitude along the horizontal and verti-
cal directions, respectively. Namely, the (i, i)-th entry of x!  and y!  are functions 

of image gradients magnitude at pixel i along the horizontal and vertical directions, 
respectively. 

The regularization term in (5) comes from the Assumption 1. Since depth-maps are 
piecewise-continuous, the uniform color regions should have uniform depth values, 
and depth edges should coincide with their photometric edges. Because the magnitude 
of image gradient is smaller in uniform regions and larger around image edges, the 
depth is desired to be smooth in uniform regions, and be preserved around image 
edges. Formally, we formulate the piecewise-continuous cost term as follows: 

2 2( ) ( ) ( )x y
i x i i y i

i
E w w= ! + !"D D D                                               (6) 

110 http://www.i-joe.org



Paper—Semi-Automatic 2D to 3D Conversion Using Low-Rank Matrix Recovery 

Where 1 (1 )x ix
iw e! "= + I , 1 (1 )y iy

iw e! "= +
I . In other words, the magnitude of image 

gradient is larger, the weights x
iw  and y

iw  are smaller. Therefore, we smooth depth in 
low gradient regions and preserve depth in high gradient regions by minimizing ( )E D . 

We can rewrite piecewise-continuous cost for all pixels i = 1, 2, ..., N of (6) in ma-
trix form as: 

( ) ( ) }T T T
x x x y y yE = ! + !D d G G G G d                                                (7) 

Where ( , ) x
x ii i w! = , ( , ) y

y ii i w! = . ( )E D  is just the regularization term in (5). 

By introducing the piecewise-continuous regularization term to (4), we obtain a ro-
bust low-rank matrix recovery formulation showed in (5) which can preserve depth 
discontinuity while removing texture details introduced by sparse interpolation. Thus, 
the depth refinement is converted to find the best solution of (5). 

4.3 Optimization algorithm 

We use the ALM algorithm [5] to solve the problem in (5). In order to solve (5) us-
ing ALM, we introduce a slack vector N!l !  to surrogated . Thus, the term con-
taining D  and the term containing d  are decoupled. Then, the problem (5) is equiva-
lently defined as follows: 

* 1,

1

min{ ( ) },  
2

s.t. ,  ( )

T T T
x x x y y y

f cP

!
"

#

+ + $ + $

+ = =

D E
D E l G G G G l

D E D D l

                                       (8) 

Thus, the solution of problem (5)) is converted to solve (8). The Lagrangian func-
tion of problem (8) is: 

1 2 1 2 * 1

22 1 11 2
1 2

( , , , , , , ) ( )
2

, , ( ) ( )
2 2

T T T
x x x y y y

f f c cF F

L

P P

!
µ µ "

µ µ# #

= + + $ + $

+ # # + # # + # + #

D E l Y Y D E l G G G G l

Y D D E D D E Y l D l D

   (9) 

The ALM algorithm solves problem (8) by choosing 1Y , 2Y , 1µ  and 2µ  judiciously 

and then minimizing 1 2 1 2( , , , , , , )L µ µD E l Y Y  as a function of D , E , l  alternately. The 

results are used to choose a new 1Y , 2Y , 1µ  and 2µ , and the procedure repeats until it 
converges. 

5 Results and discussion 

In this section, we report some experimental results which compare our approach 
with Random Walks (RW) [10], Graph Cuts (GC) [12], hybrid Graph Cuts and Ran-
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dom Walks (HGR) [12]. We also do experiments for our method with different regu-
larized term's weight to see the regularization term's improvement to low-rank meth-
od. The test images in [12] are used for comparison. 

5.1 Comparisons with existing methods 

We first compare the proposed method and three leading algorithms for semi-
automatic depth estimation. In Figs. 2-4, we have compared the depth estimation 
results for several test images. In each figure, panel (a) illustrates the input color im-
age, panel (b) shows the user marked scribbles overlaid on the original image, panel 
(c) is the depth-map generated by GC [12], panel (d) is the result done by RW [10], 
panel (e) is the depth from HGR [12], panel (f) shows depth generated by our ap-
proach. For Figs. 2-4, we both set 10! = , 100! = . 

As shown in Fig.2, the depth from our method captures the continuous changes of 
the scene. We can feel the gradual depth transition inside the fish and reeds of our 
result. However, the depth variation of the left marked reed is lost in results of RW 
[10], GC [12], and HGR [12]. The continuous depth transition in the region of the 
fish's head is also lost in these methods. With our approach, we can experience more 
depth transition between object boundaries in Fig.2. 

As shown in Fig.3, with RW [10], GC [12], and HGR [12], the bottom left corner 
and bottom right corner of the depth-map are over-light making the changes between 
these regions and their neighboring regions abrupt. Moreover, the depth discontinuous 
changes between two men are lost with hybrid Graph Cuts and Random Walks. The 
depth transition of those regions are more continuous of our method. The two men's 
boundaries of our method in Fig.3 are more recognizable than the three approaches. 

 
Fig. 2. Performance comparison for Fish image. (a) Input color image. (b) User labeled image. 

(c) Depth from GC. (d) Depth from RW. (e) Depth from HGR. (f) Depth from the pro-
posed. 
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Fig. 3. Performance comparison for Naruto image. (a) Input color image. (b) User labeled 

image. (c) Depth from GC. (d) Depth from RW. (e) Depth from HGR. (f) Depth from 
the proposed. 

 
Fig. 4. Performance comparison for Cabot Tower image. (a)Input color image. (b)User labeled 

image. (c)Depth from GC. (d)Depth from RW. (e)Depth from HGR. (f)Depth from the 
proposed. 
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As shown in Fig.4, on the grass there are only two user scribbles. This scenario 
makes the depth-map of RW [10], GC [12], and HGR [12] change abruptly from 
bottom to up on the grass. In our result, the depth changes are gradual. Besides, the 
tower boundaries of our approach are clearly demonstrated. The RW [10] and HGR 
[12] are failed to recovery the depth of small structures of the tower, e.g. the pillars on 
the left ground level of Fig. 4(d) and 4(e) are lost. 

5.2 Improvement of low-rank method by regularization 

The “Bowling” image taken from the Middlebury stereo evaluation database is 
used to evaluate regularized term's improvement to low-rank method. Since the 
ground truth depth of “Bowling” image is available, the PSNR is used to measure the 
improvement from the regularized term. We set 10! = , and increase !  from 0 to 200 
gradually. As shown in Fig.5, The PSNR rose along with regularized term's weight! . 
Although the PSNR will be improved as ! be increased, the object boundaries also 
begin to be blurred. Fig.6 shows examples of recovered depth with different weight 
!  setting. From Fig.6, we notice that the object boundaries inside the red box are 
blurred when =1000! . In order to see the differences clearly, in Fig.6, the outlier term 
E with different weight !  is scaled 5 times. The outlier terms in Fig.6 show that more 

and more details are removed from the initial estimated depth along with increasing!
. In experiments, we find 100! =  is a proper choice that trades off the object bounda-
ries versus the depth uniformity.  

 
Fig. 5. The PSNR improvement with the regularized term's weight! . 
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Fig. 6. The recovered depth with different ! . (a) User labeled image. (b) Depth of ground 

truth. (c) Depth recovered with =0! . (d)Depth recovered with =100! . (e)Depth re-
covered with =500! . (f)Depth recovered with =1000! . (g) Outlier term E with 

=0! . (h) Outlier term E with =100! . (i) Outlier term E with =1000! .  

Table 1 shows the PSNR of RW [10], GC [12], and HGR [12]. Fig.5 and Table 1 
illustrate that even without regularized term, our method improves the PSNR by more 
than 1 dB compared with RW [10], GC [12], and HGR [12]. 

Table 1.  PSNR of Bowling image (dB) 

RW GC HGR 
4.68 5.08 4.78 
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5.3 Discussion 

In semi-automatic 2D-to-3D conversion, when user scribbles are sparse, how to 
make depth transition between user marked regions be continuous is a challenge. 
Zhuo has proved that matting Laplacian based sparse interpolation can capture the 
continuous changes of the depth-map [15]. But the issue with matting Laplacian in-
terpolation is that texture details from input color image will be introduced to the 
depth-map. We argue that the discontinuity preserving smooth constrained low-rank 
method offers one promising approach to remove the texture information introduced 
by the interpolation. 

The weakness of our method is that the depth of a sub-region beside an object is 
lower than the depth of neighboring regions when its color is darker than the color of 
neighboring regions. For example, on the right side of Fig. 3(f), the depth of the dog's 
neck is lower than the neighboring regions. This is because the matting Laplacian 
sparse interpolation is based on the assumption that depth is a linear function of image 
colors in a small window. In the input color image, the color of this region is darker 
than the other parts of the dog. This region is too large to be corrected by the low-rank 
method. Maybe single-view depth cues can be introduce to fix the issue. 

6 Conclusion 

The study focuses on continuous depth transition of semi-automatic 2D-to-3D con-
version when user scribbles are sparse. Based on the view that depth is piece-
continuous, we obtain the initial dense depth-map from user scribbles by matting 
Laplacian sparse interpolation. By treating the depth-map refinement as a low-rank 
matrix recovery problem, we develop a discontinuity preserving smooth regularized 
low-rank method to remove texture details which is introduced by sparse interpola-
tion. The experimental results have demonstrated that the depth transition between 
sparse marked regions of our method is more continuous in comparison with existing 
state-of-art method. 

To the best of our knowledge, this is the first time that low-rank method is used for 
2D-to-3D conversion. There are several ways to improve the method. Since the initial 
samples is vital for low-rank matrix recovery, we can make use of existing kinds of 
depth cues to refine the sparse interpolated result. Other regularization terms can also 
be incorporated into low-rank method with the same way. Moreover, we can intro-
duce an error term to make the low-rank method be more robust to outliers. 
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