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Abstract—The control of nonlinear system is the hotspot in the control 
field. The paper proposes an algorithm to solve the tracking and robustness 
problem for the discrete-time nonlinear system. The completed control algo-
rithm contains three parts. First, the dynamic linearization model of nonlinear 
system is designed based on Model Free Adaptive Control, whose model pa-
rameters are calculated by the input and output data of system. Second, the 
model error is estimated using the Quasi-sliding mode control algorithm, hence, 
the whole model of system is estimated. Finally, the neural network PID con-
troller is designed to get the optimal control law. The convergence and BIBO 
stability of the control system is proved by the Lyapunov function. The simula-
tion results in the linear and nonlinear system validate the effectiveness and ro-
bustness of the algorithm. The robustness effort of Quasi-sliding mode control 
algorithm in nonlinear system is also verified in the paper. 

Keywords—dynamic linearization model, quasi-sliding mode control, nonline-
ar system, neural network 

1 Introduction 

With increasing demands on the improvement of the precision control, the control 
problem of nonlinear system is attracting more and more attention[1]. Especially, the 
robustness problem of nonlinear control system model has gradually become an im-
portant topic in control theory. In general, control algorithms of nonlinear system 
mainly contain the neural network control, fuzzy logic control, the sliding mode con-
trol and model free adaptive control (MFAC). 

From universal approximation theory, a single hidden layer neural network can ap-
proximate any nonlinear function to any prescribed accuracy if sufficient hidden neu-
rons are provided[2]. However, the training examples are usually much larger than the 
hidden nodes, and selecting the appropriate number of hidden nodes is the key factor 
which determining the error of the prediction model. And the algorithm of the control 
system can’t ensure the global optimal value of weight[3]. The fuzzy logic system can 
also approximate any nonlinear function to any prescribed accuracy, and it has the 
advantages in dealing with the time-delay, time-varying, multi input single output 
nonlinear system[4]. Especially, the combination between fuzzy control and PID 
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control algorithm, the objective of improved control algorithm is to eliminate the 
steady state error, and the algorithm can also improve the control accuracy and sta-
tionary performance. However, the establishment of fuzzy rules is lack of the system-
ic approach, and it has to rely on the engineering experiments[5]. Sliding mode varia-
ble structure control (SMC) has good robustness to perturbation and external disturb-
ance in sliding mode, so it becomes one of the effective methods to deal with nonline-
ar systems with various uncertainties[6]. However, the variable structure control will 
be the quasi-sliding mode control for nonlinear system. Especially, with the applica-
tion of the computer, the properties, stability and reaching conditions of sliding mode 
variable structure are changed; and variable structure control method of continuous 
time systems can not be directly applied to the discrete time system. Hence, the quasi-
sliding mode control has important theoretical value and practical significance to 
study the variable structure control method for discrete-time nonlinear systems. In 
recent years, the theory and design of variable structure control for discrete time sys-
tems are gradually increasing, and adaptive variable structure control method attracts 
many scholars because of its advantages of adaptive control and variable structure 
control[7]. And, in order to solve the disturbance problem in the system, the upper 
bound of uncertainty is adopted; it can also express that the disturbance problem is 
solved by the worst situation. It is no doubt that the dynamic performance and robust-
ness of system can be worse. However, the boundary parameters are difficult to obtain 
in real control system. It is all known that the modeling of nonlinear systems is time-
consuming and laborious, and it is very difficult to build reliable models for many 
nonlinear systems, and the cost of modeling is very high. The Model Free Adaptive 
Control (MFAC) is proposed to build the dynamic linearization model of nonlinear 
system, the algorithm is based on the theory of pseudo-partial-derivative (PPD), and 
the controller just uses the input and output information[8-9]. 

The paper combines the dynamic linearization ideology of MFAC and quasi-
sliding mode control algorithm to build a precise model and the neural network is 
designed to obtain the optimal control law based on the above model. The control 
algorithm has the following advantages, (1) a better robustness; (2) a better tracking 
performance of system. 

2 System identification and control law of the nonlinear system 

2.1 Dynamic linearization of the nonlinear system 

Considering the following unknown discrete-time SISO system  

 ( 1) ( ( ),..., ( ), ( ),..., ( ))y uy k y k y k n u k u k n+ = ! " "  (1) 

where )(!"  is an unknown nonlinear difference equation representing the plant dy-

namics, ( ) uu k !"  and ( ) yy k !"  are measurable scalar input and output, yn  and 
un  is the unknown order of the system. The system (1) is the normal NARMA mod-

el. 
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The following assumptions are made about the model (1): 
A1: The system model is observable and controllable. This is the basic requirement 

for designing controller parameters. 
A2: The partial derivative of )(!!  which is with respect to the input parameters 

)(ku  is continuous. Assumption A2 is a typical condition of control system design 
for general nonlinear system. 

A3: The system generalized Lipschitz, this is 
1 2 1 2( 1) ( 1) ( ) ( )y k y k b u k u k+ ! + " ! for any  and 2k , 1 2 1 2, , 0k k k k! "  and 

1 2( ) ( )u k u k! .Assumption A2 poses a limitation on the rate of change of the sys-
tem output permissible before the control law to be formulated is applicable. 

Theorem 1 For the nonlinear system (1) satisfying the assumptions A1-A3, then 
there must exist a time-varying parameter )(k! , called pseudo-partial-derivative 
(PPD)[10]. If 0)(u !" k , the system (1) can be described as the following model. 

 ( 1) ( ) ( ) ( )y k y k k u k!+ = + "  (2) 

Where, ( )y k  is the estimation output of system model, bk !)("  and b is the 
positive constant. 

Remark: In order to make the condition 0)( !" ku  in (2) be satisfied, and mean-
while to make the parameter estimation algorithm has stronger ability in tracking 
time-varying parameter, a reset algorithm has been added into this MFAC scheme as 
follows  

if !" #)(ˆ k  or ))1(ˆ())(ˆ( !! signksign "  or !"#$ )1(u k then

)1(ˆ)(ˆ !! =k . Where !  is a small positive constant, and )1(!̂ is the initial value of 

)(ˆ k! . 
Considering )(k!  is a time-varying parameter, only the input and output data can 

be used to get the optimal solution. The objective function can be designed in the 
following way  

22 ˆ( ( )) ( ) ( 1) ( -1) ( -1) ( ) ( 1)J k y k y k k u k k k! ! µ ! != " " " # + " "  (3) 

where 0µ >  is weight factor, and )1(ˆ !k" is the estimated value of the delay time. 
Getting the partial derivative about the )(k! ,we can get the optimal estimate value
 

2

( 1)
( ) ( 1) *( ( ) ( 1) ( 1) ( -1))

( 1)
ˆ ˆ ˆu k
k k y k y k k u k

u k
!

µ
" " "

# $
= $ + $ $ $ $ #

+ # $
 (4) 

where (0,1]!"  is the step factor. 
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2.2 Model error estimation using Quasi-sliding mode algorithm 

In the last section, the dynamic linearization model (DL model) is designed to rep-
resent the nonlinear system. But the model error still exists; in this section, we use the 
Quasi-sliding mode control algorithm to estimate the model error. Define the estima-
tion error of dynamic linearization model )(ke  

 )()()( kykyke !=  (5) 

where y(k) and )(ky are the real output and dynamic linearization model output 
respectively. Define the function of sliding mode surface )(ks [11] 

 )1()()(c)( 0 !+== keckekEks T  (6) 

where TT c ],1[c 0= , 0c is a positive value. Adopting discrete-time sliding mode 
reaching-law 

 ))(sgn()(-/))(-)1(( kskqsTksks !"=+  (7) 

 ))(sgn()()1()1( ksTksqTks !""=+  (8) 

where 0>! 01 >> qT  and 0>T  is sampling period. Rewritten (7) as 

 )1(c))(sgn()()1()1( +=!!=+ kEksTksqTks T"  (9) 

According to the formula (6)-(9), we can get the estimation of the model error 
( 1)e k +  at the next sampling time: 

 ( 1) (1 ) ( ) sgn( ( )) ( )oe k qT s k T s k c e k!+ = " " "  (10) 

In summary, the discrete-time SISO model can be represented in the formula (11): 

 !y(k +1) = y(k +1)+ e (k +1)  (11) 

where )(~ ky  is the estimation value of system model after the addition of Quasi-
sliding mode algorithm. ( 1)e k +  and ( 1)y k + represent the estimation error and 
output of the dynamic linearization model in the next sample time, respectively. The 
addition of QSMC is to predict the estimation error in advance and feed back to the 
neural network controller, therefore, the system can converge in a shorter time. 

2.3 Control law design based on the artificial neural network 

In order to get the optimal control law, we adopt the following structure of the non-
linear system. NNC is a neural network controller. DL model represents the dynamic 
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linearization model in form of (2), and QSMC is the Quasi-sliding mode controller in 
section 2.2. The structure of completed control algorithm is shown in the figure 1. 

NNC
*y ( )k + ( )ek System 

model 
( )u k! ( )y k

DL model 
Learning ( )e k

+ "

+

"

QSMC

"

( 1)y k +

+ +( 1)y k +!

 
Fig. 1. the completed control structure of the nonlinear system 

The structure of NNC. The NNC (neural network controller) is represented by the 
following structure, which is the three-layer neural network. The first layer of NNC is 
input layer, the input data )]2(),1(),([)( !!= kekekekX , where )(ke  represents the 

tracking error between real output and expected output at sample time k . 

 )()()( * kykyke !=  (12) 

where )(* ky , )(ky  represent the desired output and real output respectively. 

1( )x k

3( )x k

2 ( )x k u( )k!
1W ( )k

2W ( )k

3W ( )k

( )e k

( 1)e k "

( 2)e k "
 

Fig. 2. The inner structure of NNC 

The second layer is the hidden layer which contains three neural units; the response 
of a neural unit is as follows. 

 
!
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#

$

%+%%=&=

%%=&=

=

)2()1(2)()()(
)1()()()(

)()(

2
3

2

1

kekekekekx
kekekekx

kekx
 (13) 

The output of neural network controller 

 )()()()( 332211 kxwkxwkxwku ++=!  (14) 
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where{ } 3,2,1, =iwi  means the weight of neural network, when the appropriate 

value of the iw  is selected, the controller usually can have a good performance. 

)(ku!  is variable rate of control law. )()1()( kukuku !+"= is the control law 

at the sampling time k . So the NNC has the structure of neural network PID control-
ler. 

The weight of the neural network controller { } 3,2,1, =iwi  can be trained by the 

optimal objective function [ ]2* )(~)(
2
1 kykyJc != . So 

 [ ] )()(ˆ)(~)()(-)( * kxkkyky
w
kJkw i
i

c
i !"" #=

$
$

=%  (15) 

where 0>!  means the learning rate of neural network controller, and 3,2,1=i . 

)()1-()( kwkwkw iii !+= means the weight of neural network controller at the 

sampling time k . 

3 The stability and convergence of control algorithm 

In order to obtain the convergence and stability of the controller of nonlinear sys-
tem, another assumption about the controlled system should be made. 

A4: The PPD satisfies 0)( >>!" kc  or !" -)( <kc , and ! is a small positive 
constant. Without the loss of generality, it is assumed in this paper. 

Theorem 1: The nonlinear system (1) satisfies Assumption 1-3, the estimation al-
gorithm of model adopts the formula (5-6). The control rate adopts formula (15). If 
the expected output of nonlinear system is bounded, and the estimation of model is 
stable, and the control algorithm is stable. And the real output and input is bounded. 

Proof  

1) Time-varying parameter ˆ( )k!  is bounded. 
Considering the length of article, the paper don’t give the detailed proof, the de-

tailed process is stated in the paper[10]. 
2) The convergence of the nonlinear system model 
Define Lyapunov function 

 22)]([)( !+= kskV  (16) 

where !  is a small positive const to guarantee )(kV which is a positive function. 
According to the reaching-law of continuous sliding mode control, the reaching law 
of discrete-time sliding mode control can be written as[12]. 

 0)()1()( <!+=" kVkVkV  (17) 
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)()1(2)2(
))(())](sgn()()1[(

))((-))1(()()1()(
22

22

ksqTTqTqT
ksksTksqT

kskskVkVkV

!!!!=

!!!=

+=!+="

#

#  (18) 

Since 01 >> qT , 0,, >Tq! , hence 0!"V .  
According to the Lyapunov stability theorem, the identification model is stable. On 

the promise of the given initial value, )0(V is bounded, using the control law (14), 
the estimation of model error )(ke  tends to zero, this is 

0)()()(~)(lim =!=!
"#

kykykyky
k

. 

3) The convergence of control algorithm 
According to the approach ability of neural network, the network can optimize the 

parameters of controller by the error back-propagation way, so the output of controller 
can approach the desired output[13]. Define global Lyapunov function 

 2))((*5.0)( kekVg =  (19) 

 
2

22

))((*5.0)(*)(

))((*5.0))()((*5.0)(

kekeke

kekekekVg
!+!=

"!+=!
 (20) 

As we all know, )(ke is the function about the }{ iw , it also 

),,()( 321 wwwfke ! . According to the principle of calculus, we can get the fol-
lowing expression. 

[ ] !

!

!

!!

=

=

=

""=

#$
%
#%

"=

#$
%

#$+"%
"=

#
%
"%

=#
%
%

=#

3

1

2*2

3

1

3

1

3

1

*3

1

))((*)(~)())(ˆ(

))(()(ˆ

))()(ˆ)1((

*))(~)((*)()(

i
i

i
i

i

i
i

i

i
i

i
i

kxkykyk

w
w
kuk

w
w

kukky

w
w

kykyw
w
keke

&'

&

&

 (21) 

Due to the estimation model is convergence, so the real output )(ky  tends to 
equal to the estimation value )(~ ky . So we can get the following conclusion. 
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 [ ] !
=

""#$
3

1

2*2 ))((*)()())(ˆ()(
i

i kxkykykke %&  (22) 

According to the formula (20) and (22), 

[ ]! !
= =

"""=

#+#=#
3

1

3

1

2222*2 ]))((*))(ˆ(*5.01[))(()()())(ˆ(

))(*5.0)()(()(

i i
ii

g

kxkkxkykyk

kekekekV

$%$% (23) 

If !
=

"
3

1

22 1))((*))(ˆ(
2
1

i
i kxk#$ , hence 0)( !" kVg , according to the principle 

of Lyapunov stability, the control system is stable. 
Overall, the maximal tracking error of nonlinear system can be expressed

!<"= )()(max))(( * kykykeMax . In the range of allowable error, the control 

system has a global convergence. 
4) The boundness of real output and input 

!<"= )()(max))(( * kykykeMax , )(ke is bounded, and the desired output is 

bounded. So the real output is bounded. Since the time-varying parameter )(ˆ k!  is 

bounded, and 21 ))(()( !! +" kyMaxku , and 21,!! is a const. Hence )(ku  is 

also bounded. 
Clearly, the Theorem 1 can be proved. 

4 Simulation results 

In this section, the two simulations are used to show the effectiveness and robust-
ness of the control algorithm. 

1. The convergence and superiority of algorithm compared with the traditional PID 
algorithm in linear system. 

2. The convergence and robustness of control system in nonlinear system. 

4.1 The convergence and robustness of algorithm in linear system 

The convergence of algorithm in linear system. As we all known, the traditional 
PID algorithm is the most important control algorithm in linear system. The output of 
the incremental PID algorithm is 

 2( ) ( ) ( ) ( ( ))p i du k k e k k e k k e k! = ! + + !  (24) 
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In order to verify the superiority compared with the traditional PID algorithm, the 
discrete-time linear system is defined as follows  

 ( ) 0.8* ( 1) 0.5 ( 2) 0.5 ( 1)y k y k y k u k= ! ! ! + !  (25) 

where k  is a positive integer, and the desired output be written as (26) 

 *( ) 1 40y k k= <  (26) 

 
Fig. 3. The tracking performance compared with traditional PID in linear system 

The simulation diagram is showed in figure 3, as we can see, if the sampling time 
is less than 3, the controller needs to collect the error information of the tracking sys-
tem, so the real output equal to zero; After three sample time, the control system can 
be stable in the finite time; the real output can track the desired output perfectly and 
the error of tracking can be in allowable range. The simulation results show the new 
algorithm can depress the overshoot compared with the traditional PID algorithm, 
decrease the adjustment time and get the satisfactory tracking performance. 

The robustness of algorithm in linear system. The robustness of system is the 
important index in control systems, it refers to the perturbation of system parameters 
or system structure, the system still can maintain the characteristics, like convergence 
or stability. In order to verify the robustness of linear system compared with the tradi-
tional PID algorithm, the simulation model is as follows, the parameters perturbation 
happens at sample time 30=k . 

 0.8* ( 1) 0.5 ( 2) 0.5 ( 1)
0.8* ( 1) 0.8 ( 2) 0.5 ( 1)

30
( )
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y k y k u k
y k y k u k

k
y k

k
! ! ! + !

! ! ! + !

<"
= #

>=$
 (27) 
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Fig. 4. The robustness of algorithm compared with traditional PID algorithm in linear system 

As we can see in the figure 4, when the structure parameters of system change at 
the sample time 30=k , the new algorithm still has the better tracking performance, 
and the tracking error can be in the range of allowable at the finite time. And the ad-
justment time and adjustment amplitude of new algorithm can be smaller during the 
period of the system parameters perturbation compared with traditional PID algo-
rithm. 

4.2 The convergence and robustness of nonlinear system 

The convergence and superiority compared with the MFAC algorithm. MFAC 
(model free adaptive control), as we know, has the good performance in the nonlinear 
control system. So, in order to verify the superiority, we compare with the MFAC 
algorithm. The discrete-time nonlinear system 

 3
2 ))((
))1((1
)1()( ku

ky
kyky +
!+
!

=  (28) 

where )(ku  is the control variable of controller, )(ky and )1( !ky  are the current and 
the one step delayed outputs, respectively. And the desired output of the system is as 
follows: 

 *

0.5sin( 500) 0.3cos( 500)... 1000
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0.3................................................ 1500
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(a) the comparative figure between new algorithm and MFAC algorithm 

 

(b) Local enlarged figure of simulation results 

Fig. 5. The superiority of control system compared with the MFAC algorithm 

As we can see from the figure 5(a), the tracking error of system can be ignored in 
the range of error allowed except the sudden change of desired output. The simulation 
result validates the convergence of the algorithm and the stability of the system identi-
fication in nonlinear system. As shown in the local enlarged figure 5(b), the MFAC 
and new algorithm can track the desired output after the several step times. And the 
adjustment time and adjustment amplitude of the new algorithm have a great im-
provement compared with the MFAC algorithm. 

The robustness of control system. In order to verify the robustness of the algo-
rithm, the paper adopts the same control parameters to validate the robustness of the 
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new control algorithm; the tracking performance is shown in the figure 6. The simula-
tion model is adopted (30), and the desired output is as the form of (29). 
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(a) The robustness analysis figure in nonlinear system 

 
(b) The local enlarged figure between new algorithm and MFAC algorithm 

Fig. 6. The robust analysis in the nonlinear system 
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As we can see in the figure 6, when the structure parameters of system change at 
the sampling time 1200=k , 1300=k , the algorithm still has the better tracking 
performance, and the tracking error can be in the range of allowable at the finite time.  
From the local enlarged figure 6(b), we can see that the adjustment time and adjust-
ment amplitude of the new algorithm is less than the MFAC algorithm.  

5 Conclusion 

In this paper, a new dynamic linearization model about the Quasi-Sliding Mode al-
gorithm was proposed for identification of complex nonlinear system. A neural net-
work PID controller is designed to get the optimized control rate based on the above 
model. The advantages of algorithm are as follows: 

1. better robustness 
2. better tracking performance 
3. less adjustment time and amplitude. 

And the global stability of the system is proved by the way of the Lyponou func-
tion and Matlab simulation. 
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