
Paper—Modeling Distributed Real-time Elevator System by Three Model Checkers

Modeling Distributed Real-time Elevator System by
Three Model Checkers
https://doi.org/10.3991/ijoe.v14i04.8383

Qian Zhongsheng!!", Li Xin, and Wang Xiaojin
Jiangxi University of Finance and Economics, Nanchang, China

changesme@163.com

Abstract—The characteristics of three popular model checking tools called
SPIN, UPPAAL and NuSMV respectively, are compared and analyzed to de-
termine which type of systems is propitious to be described. And a distributed
elevator system model is built, whose related properties are verified and com-
pared by these three model checking tools. To begin with, SPIN, UPPAAL and
NuSMV, whose modeling language features are compared, are employed to
construct an elevator system model respectively. Then, the three validation
tools are used to verify several important properties of the elevator model, and
the result is analyzed and their own characteristics are summarized. Finally, the
experimental results show that SPIN and NuSMV are more suitable for verify-
ing distributed systems while UPPAAL is better for verifying real-time sys-
tems.

Keywords—Distributed Elevator System, SPIN, UPPAAL, NuSMV, Linear
Temporal Logic, Model Checking

1 Introduction

Since it was put forward by Clarke and Quielle respectively in 1981, model check-
ing has been having a unique advantage of verifying security as stated in Ref. [1],
communication protocol and security protocol of control system due to being capable
of automatically detecting all possible states in system. Then, model checker was
developed to validate the theory of model checking as stated in [2]. Presently, the
most popular model checkers include UPPAAL, SPIN and NuSMV as stated in [3],
[4] and [5].

SPIN, which is a model checking tool based on LTL (Linear Temporal Logic)[6],
uses PROMELA[7] as programming language at the moment of building a model
while LTL statement is input at the moment of verifying properties. There are many
researches with respect to model checking using SPIN. For example, Nagafuji et al.
built a verification system for a mathematical elevator model called S-ring using
SPIN as stated in Ref. [8].

UPPAAL, which is a model checking tool based on timed automata, supports the
property description language of CTL (Computation Tree Logic)[2] that is a kind of
temporal propositional logic. Of course, there are also a lot of studies concerning

94 http://www.i-joe.org

Paper—Modeling Distributed Real-time Elevator System by Three Model Checkers

building model using UPPAAL. For instance, Dai Sheng-Xin proposed a template
that can be used to analyze and verify the schedulability of multiprocessor real-time
systems in UPPAAL as stated in Ref. [9].

NuSMV, which is more widely used, supports not only CTL and LTL but also PSL
(Property Specification Language) [10]. In order to verify Petri nets, Szpyrka et al.
who successfully employed two temporal logics called CTL and LTL for verification,
devised a tool to convert Petri net into NuSMV language as stated in Ref. [11].

These three tools that use different languages also support various temporal logics.
Therefore, the properties verified by them are also different. And it is necessary that
the properties and merits of three tools are compared and analyzed. Of course, we also
need to compare and analyze which type of systems is suitable for being verified by
them.

The main work of this paper is to use UPPAAL, SPIN and NuSMV to verify the
properties of the same distributed real-time system, and to determine which properties
and systems are appropriate for verifying by them.

2 Related work

There are a lot of studies about comparison concerning model checker and which
type of system more appropriate to be verified by which model checkers. Samat et al.
[12] compared are analyzed the input language of SMV, SPIN, UPPAAL and PRISM,
and they described the limitations and differences of the input language of the four
tools through modeling and verifying a traffic light system. And they got a conclusion
that PROMELA, the input language of SPIN, is more appropriate for the description
of traffic lights system. By comparing the verification time of a reachability formula,
Daw et al. contrasted the verification performance using NuSMV, SPIN and
UPPAAL as stated in [13]. And the UML activity diagram of an infusion pump is
converted into the front-end language. The results show that the best performance
converting the UML activity diagram into front-end language is UPPAAL, the second
is SPIN, and the worst is NuSMV. Frappier et al. [14] compared and analyzed the
validation of information systems using Alloy, cadp, fdr2, NuSMV, ProB and Spin.
They verified a number of properties of behavior, attributes and entity instances of a
library management system, whose results proved that ProB is the most suitable for
verifying the information system. In order to verify models with a large number of
state variables, Choi Y et al. compared the validation effectiveness of the flight guid-
ance system as stated in [15]. And the results show SPIN was much fitter for verify-
ing the flight guidance system because SPIN is better able to avoid explosion state.
Morimoto et al. [16] converted the BPEL of describing business processes into timed
automata to simulate and verify the business process model of the enterprise. And
these technologies can be used to detect and correct the error of model as early as
possible before implementation. Aydal E G et al. compared four tools, respectively
called USE, Alloy Analyzer, ZLive and ProZ as stated in [17]. And how to effectively
verify system using different tools was proved by modeling and verifying the same
system.

iJOE ‒ Vol. 14, No. 4, 2018 95

Paper—Modeling Distributed Real-time Elevator System by Three Model Checkers

Different from the existing work, the elevator system is proved to be concurrent
and real-time in this paper. And the modeling language of UPPAAL, SPIN and
NuSMV is compared. Besides, several properties are analyzed by comparing the veri-
fication effect of elevator system.

3 Constructing system model

The difference of distributed real-time elevator control system model and common
elevator control system model is that the former considers the elevator user’s behavior
into model. And there is not only an elevator control process in the model, but also a
process of description for user’s behavior. There is the clock constraint in the entire
process of using the elevator, which can display the property of real-time. The reason
for choosing the distributed real-time elevator system model is that it has more prop-
erties to be verified than single real-time system or single distributed system.

3.1 Distributed real-time elevator system

The elevator model used in this paper is a general elevator with a single compart-
ment in the dormitory. We assume that there are eight floors in total and a single
compartment. The operation flow of elevator system is shown in Fig. 1.

!"#$

%&'()*+*',&*+

-++./.01'(2+1*('3#""+

4#*/2("+'$""+'
"5*0*$

''62++.21*'#"72(*$'.0'
(2+1*('3#""+

8**5',&.01

9&*+'1*(&'.0

6#"&*'$""+

9&*+'7)""&*&'(2+1*('
3#""+'

62++.21*'2++./*'

!"#$':,(("0''5+*&&*$

;4<

=>

;4<

;4<

=>

;4<

=>

=>

Fig. 1. Operation flow of elevator system

96 http://www.i-joe.org

Paper—Modeling Distributed Real-time Elevator System by Three Model Checkers

In the elevator model, each operation has time constraints. In other words, each op-
eration will be finished within a certain period of time. And the carriage of the eleva-
tor will automatically enter the next state if there is no other operation to be done
during this period.

According to the operation flow of the above elevator model, we can get the fol-
lowing important parameters as shown in table 1.

Table 1. The parameters of elevator system

Parameter Significance Data type
User_floor User’s initial floor int
Car_floor Elevator car floor int
Aim_floor User’s destination floor int
car Elevator car status (0 for the stop, the move for the 1) bool
door Elevator door status (0 for close, 1 for open) bool
user User status (0 in the elevator, 1 out the elevator) bool
Clk_ele Elevator process clock clock
Clk_user User process clock clock
mt Maximum travel time of elevator carriage int
dt Elevator door closing and opening time int

3.2 Elevator system model specified by SPIN, UPPAAL and NuSMV

Three model checking tools, called SPIN, UPPAAL and NuSMV, respectively
have their own modeling language and different modeling style. In order to compare
the characteristics of the three modeling languages, three tools are used to model the
elevator system, respectively. We will compare and analyze whether the three tools
can be used to describe the elevator system in detail and whether there are some prob-
lems cannot be well expressed in the process of modeling.

Elevator system model specified by SPIN. According to the elevator system
model, when modeling elevator system by SPIN, the whole model needs to be divided
into two processes: MAN process and ELE process. The role of the keyword “atomic”
is to ensure that the process of atomicity. In other words, each process is not affected
each other. Process declarations are as follows.

init
{
 atomic{run MAN();}
 atomic{run ELE ();}
}

Channels are used to communicate between processes in SPIN. In order to reflect
the real-time response of the elevator, the channel is not able to store messages, so the
message must be sent immediately when it arrives.

In the elevator system model, 5 channels are declared, namely, Opress, OPpress,
Nopress and Ipress. Channels declarations are as follows.

iJOE ‒ Vol. 14, No. 4, 2018 97

Paper—Modeling Distributed Real-time Elevator System by Three Model Checkers

chan get=[0] of {byte}; chan Opress=[0] of {byte};
chan Ipress=[0] of {byte}; chan OPpress=[0] of {bool};
chan Nopress=[0] of {bool};

After the arrival of the carriage of the elevator to the target floor, the “get” channel
is used to send a message to the user process, and the type of message is byte and the
content is the number of floor to be reached. The message that the user outside the
elevator sends to the elevator process in Opress channel expresses the number of the
target floor where the user stands, and the type of message is byte. However, the mes-
sage that the user in the carriage of the elevator sends to the elevator process in Ipress
channel expresses the number of the target floor where the user wants to reach, and
the type of message is byte type. The message in OPpress channel that expresses the
meaning of opening the door is sent to the ELE process. And the message type is bool
type, and the number “1” means opening the door of the elevator. The Nopress chan-
nel is used to send a message to the ELE process when the user stand outside the
carriage and the elevator is in the “Owait” state without further action. And the mes-
sage type is bool type, and the number “1” means that the user does not enter any
command and leave the elevator. Specific PROMELA code is as follows.

proctype MAN()
{
 outside:
 {
 clk_user=0;user=0;Opress!user_floor;gotoOwait;
 }
 Owait: ...
 inside: ...
 Iwait: ...
}
proctype ELE()
{
 hold:
 {
 clk_ele=0;door=0;car=0;Opress?user_floor;
 if
 ::(car_floor==user_floor)->goto open;
 ::(car_floor!=user_floor)->goto move;
 fi
 }
 move: ...
 open: ...
 close: ...
 }

There are 4 states, respectively called outside, Owait, inside, Iwait, in the MAN
process. The meaning of the 4 states is as follows.

98 http://www.i-joe.org

Paper—Modeling Distributed Real-time Elevator System by Three Model Checkers

• outside: the user is ready to use the elevator outside the elevator.
• Owait: the user presses the button to use the elevator, waiting for the arrival of the

carriage of the elevator.
• inside: the user is ready to enter the destination floor in the elevator.
• Iwait: the user waits for the elevator to reach the destination floor and open the

elevator door.

Corresponding to the MAN process, the ELE process also has 4 states, namely,
hold, move, open, and close.

• hold: the elevator is waiting for use.
• move: the elevator car is in operation and stops after arrival.
• open: the door of the elevator is opened, waiting for the user to come in or out.
• close: the door of the elevator is closed.

Fig. 2 is the result of running data in Random mode in Simulate interface, and Fig.
3 is the communication details between the ELE process and the MAN process.

Fig. 2. Communication between processes

Fig. 3. Result of communication

iJOE ‒ Vol. 14, No. 4, 2018 99

Paper—Modeling Distributed Real-time Elevator System by Three Model Checkers

Elevator system model specified by UPPAAL. Due to the definition of parame-
ters and the establishment of the model are separated on the editor interface, the pa-
rameters of elevator system should be declared when the elevator system model is
built in UPPAAL [18]. The two processes ELE and MAN in SPIN are represented as
two processes in UPPAAL, namely elevator and man. The channels of passing mes-
sages between processes in the UPPAAL statement are as follows.

chan get; // The get channel is used to transmit the
message of arrival.
chan Opress[8];// Opress[8] is a set of channel groups

that are used to transmit messages to elevator when user
presses button on all floors to use elevator.
chan Ipress[8]; //Ipress[8] is a set of channel groups

that are used to transmit messages to elevator when user
presses button on all floors to choose destination floor.
chan OPprrss;// The OPprrss channel is used to transmit

the message of open door.
chan Nopress;// The Nopress channel is used to transmit

the message of the user giving up the use of elevator
messages.

The difference between UPPAAL channel and SPIN channel is that the former
can’t store a number of messages in a channel or define the type of message.

The four states {hold, move, open, close} of process ELE in SPIN are represented
as four location {hold, move, open, close} of elevator model.

The elevator system modeled by UPPAAL is shown in Fig. 4. It is different from
SPIN that the hold location has an initial clock constraint: Clk_ele<=0. The hold loca-
tion is different from the other locations as the initial state, but there is no initial state
in the PROMELA. The edge from the hold location to the move location, the green
font (Car_floor! =User_floor) is a guard, equivalent to the case of select state-
ment::Car_floor!=User_floor. UPPAAL does not has select statement, only has judg-
ment statement. The blue font (Car_floor=User_floor) is the update of the data that is
executed in the move location, and the update of the data in the SPIN is assigned to
the data at the beginning of the state.

There is a clock constraint Clk_ele<=mt at move location, and mt is maximum
travel time of elevator car. In SPIN there is no clock constraint.

The four states {outside, Owait, inside, Iwait} of process ELE in SPIN are repre-
sented as four states {outside, Owait, inside, Iwait} of elevator model.

The elevator model modeled by UPPAAL is shown in Fig. 4 and Fig. 5. The two
processes have their own initial state and clock. In man process, there is a clock
Clk_user which is independent of Clk_ele.

The communication details between the models are shown as Fig. 6, and Fig. 7 is
the result of date running in simulator.

100 http://www.i-joe.org

Paper—Modeling Distributed Real-time Elevator System by Three Model Checkers

Fig. 4. Elevator template

Fig. 5. Man template

iJOE ‒ Vol. 14, No. 4, 2018 101

Paper—Modeling Distributed Real-time Elevator System by Three Model Checkers

Fig. 6. Communication between templates Fig. 7. Result of data running

Elevator system model specified by NuSMV. Unlike SPIN and UPPAAL, the
NuSMV system model specification is written in an elevator.smv file which is edited
by using text editor. The definition and assignment of parameters are in the process of
elevator and man in SPIN. In NuSMV, we need to define and give the initial value in
main module. There is no channel in NuSMV, but it can also complete the communi-
cation between the processes through the global parameters. In the elevator system
model we define a global parameter press, mpress and epress are defined in the man
process and ele process to correspond. Press from 1 to 8 is equivalent to the channel
Opress in SPIN, and Press from 9 to 18 is equivalent to the channel Ipress in SPIN,
press 17 is equivalent to the channel get in SPIN. The data type of the parameters
press is Boolean, the value is {TRUE, FALSE}. Specific code is as follows.

MODULE main
VAR
pr1:process man(press);
pr2:processele(press);
press:array 1..17 of boolean;
user:boolean; car_floor:1..8; user_floor:1..8;
aim_floor:1..8; door:boolean; car:boolean;

ASSIGN
init(press[1]):=FALSE; init(press[2]):=FALSE;
...

init(user_floor):=1; init(aim_floor):=6;
init(car_floor):=8; init(door):=FALSE;
init(car):=FALSE; init(user):=FALSE

SPEC A [(car=TRUE)U(door=FALSE)]

102 http://www.i-joe.org

Paper—Modeling Distributed Real-time Elevator System by Three Model Checkers

SPEC EF (pr1.mstate=Iwait)
SPEC AG(pr1.aim_floor=6)-> EF(pr1.user_floor=6)
SPEC EF (pr2.car_floor=1)
SPEC EF

((pr2.car=TRUE)&(pr1.user=FALSE)&(pr1.mstate=Iwait))
SPEC EBF 0..10 pr1.user_floor=6.

The two processes in the SPIN contain four states, the two processes are divided
into four small modules, and the parameters are changed in these four modules. But
the NuSMV code is different, a process is divided into modules, respectively, the
VAR parameter definition module and the ASSIGN parameter change module, all the
parameters are a small change of the module. In upper code, mstate is the states of
user, are equal to four locations in UPPAAL, namely, {outside, Owait, inside, Iwait}.
All parameter updates need to be determined in the “next” function, if the case is
correct then implement the statement behind the ":". Due to space limitations, here is
only part of the key code.

MODULE man(mpress)
VAR
 mstate:{outside,Owait,inside,Iwait};
 ...
COMPUTE MIN[mstate=outside,mstate=Iwait];
ASSIGN
 init(mstate):=outside;...
 next(mstate):=
 case
 (mstate=outside)&(user=FALSE):Owait;
 (mstate=Owait)&mpress[17]:inside;
 (mstate=inside)&(aim_floor!=car_floor):Iwait;
 (mstate=Iwait)&mpress[17]:outside;
 TRUE:mstate;
 esac;...

Estate: {hold, move, open, close} is the four states of the elevator in ele process,
and it is equivalent to the four states of ELE process in SPIN.

4 Verification, comparison and analysis

For the elevator system, the following properties need to be verified:

• Safety: it is the most important property. And there will not be any risk that can
endanger the safety of users and any dangerous things in the entire running process
of elevator system.

• No deadlock: there will be no deadlock when the elevator system is running, which
can ensure that the user will not be unable to get out of the elevator.

• Activity: elevator will eventually reach the target floor.

iJOE ‒ Vol. 14, No. 4, 2018 103

Paper—Modeling Distributed Real-time Elevator System by Three Model Checkers

• Reachability: there is always a way, by which the user can reach the destination
floor.

• Real-time: the elevator can arrive within the specified time.
• Fault tolerance: when the user is wrong, the elevator is not affected to continue to

run.
• Concurrency: two users use the elevator in the same time.

4.1 The result of verification and its analysis in SPIN

Properties in LTL for 7 properties above are shown in the table 2 as follows.

Table 2. Properties in LTL of SPIN

Properties Properties in LTL Result

Safety ltl e1 {!([](c==1)&&(door==1))}; TRUE

No deadlock ltl e3 {[]((User_floor==2)-><>(Car_floor==2))}; TRUE
Activity ltl e2 {<>(Car_floor==6)}; TRUE

Reachability ltl e3 {[]((Aim_floor==6)-><>(User_floor==6))}; TRUE
Real-time ltl e4 {[](Clk_user<=13)}; FALSE

Fault tolerance
ltl e5{<>((Aim_floor!=User_floor)&&(car==1)&&(user==0)&&

(Clk_user==6))};
FALSE

Concurrency
ltle6{[](((Aim_floor==3)&&(Aim_floorb==3))->

<>((User_floor==3)&&(User_floorb==3)))};
FALSE

Fig. 8 is the result of security verification in SPIN. As it is shown in the figure,

there is no security error or warning in the elevator system. Fig. 9 is the result of fault
tolerance verification in SPIN, and there is an obvious error in this figure. Due to the
limited space, there are only two figures of verification result.

To verify the concurrency of the elevator system, we create another user process
MAN_1, and define Opress and Ipress as channels, which can store 1 message in the
ELE process.

chan Opress=[1] of {byte}; chan Ipress=[1] of {byte};

The concurrency in LTL is described that two users at different floor have the same
destination floor. And the result is FALSE. The reason is that when the two user pro-
cesses to send messages in the channel, the ELE process will only read one message
and finish it while another process will permanently block in the elevator system
model. It means another user will always stay out of the elevator, so the elevator sys-
tem has no concurrency.

104 http://www.i-joe.org

Paper—Modeling Distributed Real-time Elevator System by Three Model Checkers

4.2 The result of verification and its analysis in UPPAAL

Properties in CTL for 7 properties above are shown in the table 3 as follows.

Table 3. Properties in CTL of UPPAAL

Properties Properties in CTL Result
Safety A[](elevator.move imply door==0) Satisfied

No deadlock A[] not deadlock Satisfied
Activity E<>(User_floor==2 and Car_floor==2) Satisfied

Reachability
(man.Iwait imply Aim_floor==6) -->(man.outside imply Us-

er_floor==6)
Satisfied

Real-time A[] man.Iwait imply Clk_user<=11 Satisfied
Fault tolerance (man.Iwait imply user==0)-->elevator.move Not satisfied
Concurrency This property cannot be expressed Not satisfied

Fig. 10 shows description in CTL of UPPAAL for the first 6 properties, and the

green dot behind properties indicates that property is satisfied, the red dot behind
properties indicates that property is not satisfied. Fig. 11 shows the final verification
results.

Fig. 10. Properties in CTL of UPPAAL

Fig. 8. Security verification Fig. 9. Fault tolerance verification

iJOE ‒ Vol. 14, No. 4, 2018 105

Paper—Modeling Distributed Real-time Elevator System by Three Model Checkers

Fig. 11. The final verification results in UPPAAL

4.3 The result of verification and its analysis in NuSMV

Properties could be described in CTL, LTL and PSL, table 4 describes 7 properties
above in CTL.

Table 4. Properties in CTL of NuSMV

Properties Properties in CTL Result
Safety SPEC A[(car=TRUE)U(door=FALSE)] TRUE

No deadlock COMPUTE MIN[mstate=outside,mstate=Iwait]; TRUE
Activity SPEC EF (pr2.car_floor=1) TRUE

Reachability SPEC AG(pr1.aim_floor=6)-> EF(pr1.user_floor=6) TRUE
Real-time SPEC EBF 0..10 pr1.user_floor=6 TRUE

Fault tolerance
SPEC EF

((pr2.car=TRUE)&(pr1.user=FALSE)&(pr1.mstate=Iwait))
FALSE

Concurrency SPEC EF (pr3.ib=6)&(pr1.i=6) FALSE

Fig. 12. The verification results in NuSMV

106 http://www.i-joe.org

Paper—Modeling Distributed Real-time Elevator System by Three Model Checkers

Fig. 12 is the verification result of first 6 properties by NuSMV, and there is an ex-
ecution sequence for a test case. As demonstrated by this execution sequence, the
property will run error.

Concurrency needs to be added to the code in a user process man2, the code is as
follows.

MODULE main
VAR
 pr1:process man1(press);
 pr2:processele(press);
 pr3:process man2(press);
 press:array 1..17 of boolean;

ASSIGN
 init(press[1]):=FALSE;
 init(press[2]):=FALSE;

SPEC EF (pr3.userb_floor=6)&(pr1.user_floor=6)
SPEC EF (pr3.userb_floor=6)|(pr1.user_floor=6)

Fig. 13. The verification result of concurrency in NuSMV

iJOE ‒ Vol. 14, No. 4, 2018 107

Paper—Modeling Distributed Real-time Elevator System by Three Model Checkers

Assuming that the user, called user b, is on the 2nd floor and another user is on the
1th floor, and their destinations are the 6th floor, and we should verify whether both
of them will reach the 6th floor. The result is shown in Fig. 13 that there is only one
user will arrive the 6th floor. It shows that this elevator does not have concurrency.

4.4 Comprehensive comparison and analysis of property verification

Table 5 is the comparison of properties verification in SPIN, UPPAAL and
NuSMV.

Table 5. The comparison of properties verification

 SPIN UPPAAL NuSMV

Safety established established established
No deadlock established established established
Activity established established established
Reachability established established established

Real-time cannot be described established cannot be described

Fault tolerance not established not established not established

Concurrency not established cannot be described not established

From table 5, the performance of verifying the distributed real-time elevator sys-

tem by three tools is different. The performance of real-time verification by SPIN and
NuSMV is not as good as that by UPPAAL. SPIN can add a timing clock into
PROMELA program, which serves to the user to calculate the time of using the eleva-
tor. NuSMV can calculate the shortest path to reach destination floor. However, SPIN
and NuSMV do not have the clock system and can not set the clock constraint on each
state while SPIN and NuSMVcan not verify the real-time. UPPAAL is less effective
for concurrency verification than SPIN and NuSMV, because the UPPAAL channel
can not store two messages at the same time and do description when the two users
use the elevator at the same time. Therefore, it can be concluded that SPIN and
NuSMV are more suitable for the verification of distributed systems, while UPPAAL
is more propitious to the verification of real-time systems.

5 Concluding remarks and future work

SPIN, UPPAAL and NuSMV are used to model the distributed real-time elevator
system, which adds user behavior as a process. Three tools with different modeling
methods can be successfully used to model the elevator system, which shows that
these three tools can be used to verify the common information system. And some
results are found by modeling the same distributed real-time elevator system.

108 http://www.i-joe.org

Paper—Modeling Distributed Real-time Elevator System by Three Model Checkers

1. The state description for the next location be regarded as update for parameters in
PROMELA, which is not as obvious and specific as update for parameters in
UPPAAL and NuSMV.

2. UPPAAL does not have a direct loop structure, which leads to a worse perfor-
mance compared with a do statement of PROMELA.

3. Compared with the other two tools, the modeling language of NuSMV is more
convenient and simple, and updating for each parameter is more distinguishable
where modeling code is more verbose for lack of channel.

SPIN, UPPAAL and NuSMV are used to verify several important properties of el-
evator model. Based on the comparison of the results, we find that SPIN and NuSMV
are more suitable for verifying distributed systems while UPPAAL is better for veri-
fying real-time systems.

To find which model checking tool is fit for the distributed elevator system, we
will further contrast the effect and performance of the distributed elevator system
verified by SPIN and NuSMV in the next step.

6 Acknowledgment

Thanks go first to the anonymous referees for their sound comments and sugges-
tions. This work is partly supported by the National Natural Science Foundation of
China under Grant Nos. 61762041 and 61462030, and the Science and Technology
Project of Jiangxi Provincial Department of Education of China under Grant No.
GJJ160427.

7 References

[1] Clarke E M. The Birth of Model Checking[M]. Springer-Verlag, 2008: 1-26.
https://doi.org/10.1007/978-3-540-69850-0_1

[2] Clarke, E. M, Emerson, et al. Automatic Verification of Finite-state Concurrent Systems
Using Temporal Logic Specifications [J]. ACM Transactions on Programming Languages
& Systems, 1994, 8(2): 244-263. https://doi.org/10.1145/5397.5399

[3] Vardi M Y, Wolper P. An Automata-theoretic Approach to Automatic Program Verifica-
tion [J]. Proc. of the First Annual IEEE Symp on Logic in Computer Science, 1986: 322-
331.

[4] Holzmann G J. The Model Checker SPIN [J]. IEEE Transactions on Software Engineering,
1997, 23(5): 279-295. https://doi.org/10.1109/32.588521

[5] Cimatti A, Clarke E, Giunchiglia F, et al. NUSMV: A New Symbolic Model Checker [J].
International Journal on Software Tools for Technology Transfer, 2000, 2(4): 410-425.
https://doi.org/10.1007/s100090050046

[6] Holzmann G. The SPIN Model Checker: Primer and Reference Manual[M]. Addison-
Wesley Professional, 2011.

[7] Mikk E, Lakhnech Y, Siegel M, et al. Implementing Statecharts in Promela/SPIN[C]//
IEEE Workshop on Industrial Strength Formal Specification Techniques, 1998: 90-101.

[8] Nagafuji K, Yamaguchi S. Éclair: An Elevator Group Controller Model Checking System
based on S-ring and SPIN[C]// Consumer Electronics. IEEE, 2014: 178-181.

iJOE ‒ Vol. 14, No. 4, 2018 109

Paper—Modeling Distributed Real-time Elevator System by Three Model Checkers

[9] Dai Sheng-Xin, Hong Mei, Guo Bing. Schedulability Analysis Model for Multiprocessor
Real-Time Systems Using UPPAAL [J]. Journal of Software (in Chinese), 2015(2): 279-
296.

[10] Pnueli A, Zaks A. PSL Model Checking and Run-Time Verification Via Testers[M]//
Formal Methods.Springer, Berlin Heidelberg, 2006: 573-586.

[11] Szpyrka M, Biernacka A, Biernacki J. Methods of Translation of Petri Nets to NuSMV
Language[C]// 23rd International Workshop on Concurrency, Specification and Program-
ming. Chemnitz, Germany, Sept. 2014.

[12] Samat P A, Zin A M, Shukur Z. Analysis of The Model Checkers' Input Languages for
Modeling Traffic Light Systems[J]. Journal of Computer Science, 2011, 7(2): 225-233.
https://doi.org/10.3844/jcssp.2011.225.233

[13] Daw Z, Cleaveland R. Comparing Model Checkers for Timed UML Activity Diagrams[J].
Science of Computer Programming, 2015, 111: 277-299. https://doi.org/10.1016/j.scico.
2015.05.008

[14] Frappier M, Fraikin B, Chossart R, et al. Comparison of Model Checking Tools for Infor-
mation Systems[C]// International Conference on Formal Engineering Methods and Soft-
ware Engineering. Springer-Verlag, 2010: 581-596.

[15] Choi Y. From NuSMV to SPIN: Experiences with Model Checking Flight Guidance Sys-
tems [J]. Formal Methods in System Design, 2007, 30(3): 199-216.
https://doi.org/10.1007/s10703-006-0027-9

[16] Morimoto S. A Survey of Formal Verification for Business Process Modeling [J]. 2008,
14(4): 514-522.

[17] Aydal E G, Utting M, Woodcock J. A Comparison of State-Based Modelling Tools for
Model Validation [M]// Objects, Components, Models and Patterns. Springer, Berlin Hei-
delberg, 2008: 278-296.

[18] Fatima T, Saghar K, Ihsan A. Evaluation of Model Checkers SPIN and UPPAAL for Test-
ing Wireless Sensor Network Routing Protocols[C]// International Bhurban Conference on
Applied Sciences and Technology. IEEE, 2015: 263-267.

8 Authors

Qian Zhongsheng is a professor in School of Information Technology, Jiangxi
University of Finance and Economics, Nanchang, 330013, China. His main research
direction is software testing and model checking. (changesme@163.com)

Li Xin is a postgraduate student in School of Information Technology, Jiangxi
University of Finance and Economics, Nanchang, 330013, China.. His main research
direction is model checking and software verification. (1594919301@qq.com)

Wang Xiaojin is a postgraduate student in School of Information Technology,
Jiangxi University of Finance and Economics, Nanchang, 330013, China.. His main
research direction is model checking and intelligent algorithm. (wxjin107@qq.com)

Article submitted 16 October 2017. Resubmitted 07 February, 28 February and 15 March 2018. Final
acceptance 31 March 2018.

110 http://www.i-joe.org

	iJOE – Vol. 14, No. 4, 2018
	Modeling Distributed Real-time Elevator System by Three Model Checkers

