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Abstract—Path planning of Unmanned Underwater Vehicle (UUV) is of con-
siderable significance for the underwater navigation, the objective of the path 
planning is to find an optimal collision-free and the shortest trajectory from the 
start to the destination. In this paper, a new improved particle swarm optimization 
(IPSO) was proposed to process the global path planning in a static underwater 
environment for UUV. Firstly, the path planning principle for UUV was estab-
lished, in which three cost functions, path length, exclusion potential field be-
tween the UUV and obstacle, and attraction potential field between UUV and 
destination, were considered and developed as an optimization objective. Then, 
on the basis of analysis traditional particle swarm optimization (PSO), the time-
varying acceleration coefficients and slowly varying function were employed to 
improve performance of PSO, time-varying acceleration coefficients was utilized 
to balance the local optimum and global optimum, and slowly varying function 
was introduced into the updating formula of PSO to expand search space and 
maintain particle diversity. Finally, numerical simulations verify that, the pro-
posed approach can fulfill path planning problems for UUV successfully. 

Keywords—Unmanned Underwater Vehicle, path planning, PSO, time-varying 
acceleration coefficient, slowly varying function 

1 Introduction 

With the popularity and wide application of UUV (Unmanned Underwater Vehicle) 
in the ocean engineering and military operation fields, UUV as an indispensable intel-
ligent navigation vehicle has attracted many attentions [1-4]. The path planning of UUV 
is one of the challenging problem in the application processing, because it is a founda-
tion to ensure safe and efficient completion of complex underwater tasks [5-10]. The 
main objective of the path planning is considered as the computation an optimal 
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collision-free and the shortest trajectory from the start to the destination without hitting 
with any of the obstacles in underwater environment.  

Generally, path planning problem can be classified into two categories: local path 
planning (LPP) and global path planning (GPP) [11,12]. LPP mainly relies on the un-
known or partially known environmental information that is obtained from the acoustic 
sensors, such as forward-looking sonar. In dealing with the LPP problem, some ap-
proaches have been applied, such as artificial potential field method [13], fuzzy logic 
algorithm [14], and the rolling windows method [15]. However, those methods always 
exists some significant problems such as high computational cost, ineffective in path 
planning when the underwater space is large, and even deadlock phenomenon. 

GPP as the other approach has been widely put forward, which can be formulated as 
a constrained optimization problem that is a non-deterministic polynomial hard prob-
lem with high computational complexity. Recent decades, numerous GPP approaches 
have been proposed such as diagrams algorithm and visibility graphs, especially global 
evolutionary algorithms [6,8,11,16-18]. The evolutionary algorithms compared with 
others GPP methods have advantages: easy implementation, strong capacity of global 
search, fast convergence rate and good robustness. Generally, there are some useful 
evolutionary algorithms [16] has been developed such as the heuristic A-star algorithm, 
genetic algorithm, ant colony algorithm, differential evolution, and obtained some great 
achievements.  

Among those algorithm, PSO [6,16,19] as a global evolutionary algorithm is inspired 
by the behaviors of stochastic swarm such as flocks of birds and schools of fish, which 
mainly uses the swarm intelligent to achieve the goal of optimization. PSO has been 
applied to many domains with good performance such as system identification, neural 
networks and system control because of its characteristics of swarm intelligence, intrin-
sic parallelism, and inexpensive computational. However, Due to a few adjustable pa-
rameters such as population size, inertia weight and acceleration coefficients, PSO suf-
fered from the premature convergence and trapping in local optimum problem, and 
even lack of population diversity. Several improved PSO algorithms, such as PSO-
linearly inertia weight, PSO-fuzzy inertia weight and PSO-nonlinear inertia weight, had 
been proposed [8,19]. At present those methods have obtained with a certain perfor-
mance improvement, but convergence and scarce exploration was also the frequent 
problems in the application process. 

Inspired by the above discussion, a new particle swarm optimization algorithm 
(IPSO) is developed to solve global path planning for UUV in this paper. The remainder 
of this paper is organized as follow. The formulation and principle of global path plan-
ning for UUV is established in the Section 2, the UUV modeling and cost function are 
the research focus. The Particle swarm optimization is described briefly in the Section3. 
Improved PSO algorithm is presented by time-varying acceleration coefficients and 
slowly varying function in Section 4. Section 5 describes experimental simulation. Fi-
nally, conclusion of the study and future work in the paper are given in Section 6. 
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2 Formulation and Principle of Global Path Planning for UUV 

The goal of path planning for UUV is to find an optimal collision free and the short-
est trajectory path to avoid obstacles between the start and the destination with in an 
unknown underwater environment. To clear illustrate the path planning problem for 
UUV, this section presents formulation and principle of global path planning for UUV. 

2.1 UUV Modeling and Environment Modeling 

To clearly demonstrate path planning for UUV, UUV modeling and environmental 
modeling are developed by three assumptions, which are shown as following. 

(1) UUV model is simplified as a particle description, and its kinematic model is 
demonstrated as: 

      (1) 

where denotes the position of the UUV.  denotes the heading, and denotes 
the velocity. 

(2) The UUV system moves on a two-dimensional space, and the motion region can 
be expressed by finite convex polygons, in which there are finite number of unknown 
static obstacles. The UUV sensor system can determine the position of the obstacle by 
the perceived obstacle information and estimate the obstacle size, but limited scope of 
perception. The detection range of UUV sensor system is a circular area with radius r. 

(3) The obstacle is depicted as the circle, which is subjected to a corresponding puff-
ing process according to the actual dimensions and safety requirements of the UUV, 
that is, the radius of the obstacle includes its own radius and the radius of rotation of 
the UUV. Also, the obstacle boundary is a safe area. 

2.2 Cost Function Modeling 

It is very important to select a fitness function to evaluate the path individual. The 
tradition method of cost function generally considers the path length, which is shown 
as Fig.1.  
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Fig. 1. Cost Function of Path Length 

  In Fig.1, and respectively denote the starting point and des-

tination point coordinates for UUV planning, and  denotes i-th path point,

. To simplify the planning process, UUV searches the path point 

 by the fixed step length S. Thus, cost function can be calculated as follow 

     (2) 

where denotes the length between the point  and . 

According to the Eq.(2), the path planning of UUV can be converted to find the 

shortest path, however the constraint, whether the line between point  and  ap-
pear in the obstacles region, is not considered, which can only be judged by the algo-
rithm itself and increased the complexity of algorithm design and computation. 

In order to overcome the above shortcoming, wo consider the attractive and repulsive 
fields as the other factors according to potential field theory, in which every search step 
onley need to find the best heading angle [6]. 

 (1). Cost function of repulsive potential field in avoiding obstacle. In underwater 
environment, there exists some static obstacle, which is shown as Fig.2. 
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Fig. 2. Cost Function of repulsive Potential Field 

In Fig.2,  denotes the positon at i-th point, denotes the candidate position at 
i+1 point, and L denotes the distance between the i-th point and obstacle at the heading 

angle . So, the cost function of avoiding obstacle can be defined as 

     (3) 

where S denotes the step length. At the heading angle , if the distance between 
UUV and obstacle is larger, the cost function is greater, otherwise the cost function is 
smaller. 

 (2). Cost Function of attractive potential field to the destination. According to the 
potential field theory, there is an attractive potential field existing between the UUV 
and destination, so attraction potential field between them is shown as Fig.3.  
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Fig. 3. Cost Function of attractive Potential Field 

In Fig.3,  denotes the angle between the current point  and the destination point

, and denotes the heading angle between the candidate point  and destina-

tion point . If attractive potential field obey the normal distribution, the cost function 
of attractive potential field to the destination can be defined as 

        (4) 

where is parameter of normal distribution. 
 Then, the cost function of attractive and repulsive fields can be calculated as 

    ,     (5) 

where and are the weight coefficient. 
 Finally, according to the Eq.(2)and Eq.(5), total cost function of the path planning 

for UUV can be calculated as  

  ,    (6) 

where and are the weight coefficient. 
Based on the above analysis, the cost function of path planning at the current path 

point is established for UUV, the IPSO is used to search the trajectory of the cost func-
tion that obtains the minimum value of path point. And searched point can be taken as 
optimal path point at the next navigation path. 
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3 Improved PSO algorithm 

In PSO, there exists two questions falling into local minima and lack of diversity of 
particles in practical application. How to solve the questions has attracted some atten-
tion. Therefore, we propose a novel Improved PSO (IPSO) with the purpose of increas-
ing performance in this paper. In IPSO, time-varying acceleration coefficients and 
slowly varying function were employed, time-varying acceleration coefficients is uti-
lized to balance the local optimum and global optimum, and slowly varying function is 
introduced into the updating formula of PSO to expand search space and maintain par-
ticle diversity. 

3.1 Time-Varying Acceleration Coefficients 

Acceleration coefficients determines the cognitive experience of particle and social 
experience of all particle in the search of swarm trajectory. That is, the larger c1 is, the 
more is the attraction of particle toward its own personal best, therefore the more ex-
plorative capability. In contrast, the larger c2 is, the more is the attraction of particles 
toward swarm global best, therefore the more exploitative capability. Therefore, the 
appropriate balance of the control learning factors c1 and c2 is very important to find 
the optimal solution accurately and efficiently.  

Ideally, at the early stages of the optimization processing, particles should be focus 
more on exploration of region of search space in hope of finding the region included 
global optimum. And at the later of the optimization processing, particles should be 
focus more on exploitative and converge towards the global optimum. Therefore, to 
meet the requirement of ideal acceleration coefficients, c1 and c2 are updated in a way 
that the cognitive part is reduced and social part is increased along iteration process. 
So, a new time-varying acceleration coefficients is employed to enhance exploration 
and exploitation of particle towards optimal solution, which are defined as [20,21]  

    (11) 

      (12)
 
 

         (13) 

where c1,ini and c2,ini are the initial values of cognitive factor and social factor 
respectively, c1,fin, and c2,fin are the final values of cognitive factor and social factor 

respectively. as the adding part in Eq.(7) is utilized to converge to a better solution 

due to the fact that the best solution in the k iteration. Therefore, the velocity and 
position of the particles are updated as: 
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 (14) 

     (15) 

where is a random number in the interval of [0,1], similar to the r1 and r2. 

3.2  Maintain particle diversity based on Slowly-Varying Function 

In order to maintain swarm diversity of and expand search space, slowly-varying 
function is introduced into the updating formula of PSO algorithm [19,22].  

Definition1: Given function l(x), and a>0, there exists l(x)>0 in , 

if is monotone increasing and  is monotone decreasing, then l(x) is 
called as the slowly varying function(SVF). 

Definition2: Given SVF l(x), and a>0, in , is defined as 
regular varying function (RVF). 

RVF is employed to use in early-stage in PSO optimization because of the fact that 
PSO need better global optimization ability in the early-stage. The update formulates 
are calculated as  

 (16) 

    (17) 

where is the control parameter. 
SVF is employed to use in later-stage in PSO optimization because of the fact that 

algorithm needs precise local searching ability. The update formulates are calculated as 

  (18) 

    (19) 

SVF had been proved convergence. So, in this paper, we select a slowly varying 
function with increasing speed and disturbance relatively faster, it is shown as [19] 

    (20) 

where is the control factor. 
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3.3 Algorithm description 

Based on the above analysis and discussion, solution procedures of the proposed 
method are summarized as follows: 

Step1: Initialize the related parameters such as the size of the population M, learning 
factors c1, c2 and c3, maximum number of iterations K. initial values of cognitive co-
efficient c1,ini and c2,ini, final values of cognitive coefficient c1,fin, and c2,fin. 

Step2: Initialize the particles' velocities V0 and positions X0. optimal solution of 
individual particle Pbest(0) and particle population optimal solution Gbest(0), and par-
ticle best solution iteration Cbest(0). 

Step3: At k=K, calculate time-varying acceleration coefficients c1, c2 and c3 ac-
cording to Eq.(11)- Eq.(13). 

Step4: Calculate nonlinear inertia weight according to Eq.(10). If nonlinear inertia 
weight is equal to the 0.5, then turn to Step5, and If nonlinear inertia weight is smaller 
than 0,5, then turn to Step6, other then turn to Step7. 

Step5: Update particles' velocities Vk and positions Xk according to Eq.(14)-(15), 
then turn to Step8. 

Step6: Update particles velocities Vk and positions Xk based on regular varying 
function according to Eq.(16)-(17), then turn to Step8. 

Step7: Update particles velocities Vk and positions Xk based on slowly varying 
function according to Eq.(18)-(19), then turn to Step8. 

Step8: calculate cost function in Eq.(6), and update the optimal solution of indi-
vidual particle Pbest, particle population optimal solution Gbest, and particle best solu-
tion in the k iteration Cbest. 

Step9: If the termination criterion is satisfied, export result of the algorithm, and 
iteration is equal to maximum number K, stop the algorithm. Otherwise, k=k+1, go 
back to Step3. 

4 Simulation Experiment Analysis 

To verify the correctness and validity of the proposed IPSO for UUV path planning, 
a representative scenario simulation is implemented in this paper. Assume that the UUV 
avoids underwater static obstacles to reach the destination. Simulation environment is 
a 10000(m)×10000(m) underwater space, there have eight randomly obstacles in space, 
which is described as circular area (A#,B#,C#,D#,E#,F#,G#,H#), and the location and 
radius are described as Table 1. Moreover, the size of the UUV is a circle, movement 

velocity is set as 2.5 m/s, the initial heading is set as , and the sensor ranger is 
set as 1000 m, the starting and destination are located at (0,0) and (10000,10000), re-
spectively. The IPSO parameters are setting as population M=200, maximum number 

of iterations K=200, maximum weight and minimum weight .The 
simulation experiment is designed by using the MATLAB on PC computer, and the 
configuration is Intel(R) Core™ i7 CPU3.40GHz, 8.0G RAM memory. The path plan-
ning trajectory of IPSO and PSO is shown as Fig.5-Fig.6. 
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As shown in Fig.5-Fig.6, the path planning of the proposed IPSO can avoid the static 
underwater obstacles successfully from the start to the destination, and the path is much 
smoother compared with PSO. That is because that the IPSO can converge faster to the 
global optimum and avoid falling into local optimum in the iterative process. In order 
to verity the better performance of the proposed method in path planning for UUV, the 
experiment is testified by Monte Carlo simulation of 100 times by the performance 
indicators: path length and run time under the same condition. The statistical results 
quantitative indicators of IPSO and PSO are shown in Table 2. 

Table 1.  The location and radius of obstacles 

Obstacle Location Radius Obstacle Location Radius 
A# (3250,3500) 900 E# (5500,2000) 900 
B# (2300,900) 600 F# (5200,6600) 1300 
C# (1800,7500) 1200 G# (7000,5000) 800 
D# (8000,7600) 600 H# (8500,2540) 800 

 
Fig. 4. Path planning trajectory of IPSO 
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Fig. 5. Path planning trajectory of PSO 

Table 2.  Comparison results on path length and run time 

Methods Path Length Run Time 
PSO 16142(m) 6456.8(s) 
IPSO 14980(m) 5992.0(s) 

 
As can be seen from Table 2, it is reported that path length and run time with our 

proposed method reduces respectively by all 7.2% compared with PSO under the same 
simulation condition. Obviously, the proposed IPSO has a better performance in path 
planning for UUV. 

5 Conclusions and Future Work 

The path planning of UUV is one of challenging problem, because it is a foundation 
to ensure safe and efficient completion of underwater complex tasks. In this paper, a 
new improved particle swarm optimization (IPSO) is proposed to find a collision-free 
and the shortest path from a start to a destination without hitting with any of the obsta-
cle. There are several contributions in this method as follows: (1) path planning princi-
ple for UUV is established, in which three cost functions, path length, attractive and 
repulsive fields are developed as an optimization objective. And (2) time-varying ac-
celeration coefficients and slowly varying function are employed to improve 
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performance of IPSO. To verify the feasibility and effectiveness of proposed method, 
compared experiment has been established. Simulation results demonstrate that the 
IPSO can effectively fulfill path planning for UUV. Our future work will focus on the 
exact application of our proposed method in re-planning and navigation controller de-
sign, and multiple UUV formation coordinated control is also another hot issue in this 
field. 
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