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Abstract—With the rapid growth in the numbers of scientific publications 
in domains such as neuroscience and medicine, visually interlinking documents 
in online databases such as PubMed with the purpose of indicating the context 
of a query results can improve the multi-disciplinary relevance of the search 
results. Translational medicine and systems biology rely on studies relating 
basic sciences to applications, often going through multiple disciplinary 
domains. This paper focuses on the design and development of a new scientific 
document visualization platform, which allows inferring translational aspects in 
biosciences within published articles using machine learning and natural 
language processing (NLP) methods. From online databases, this software 
platform effectively extracted relationship connections between multiple sub-
domains within neuroscience derived from abstracts related to user query. In 
our current implementation, the document visualization platform employs two 
clustering algorithms namely Suffix Tree Clustering (STC) and LINGO. 
Clustering quality was improved by mapping top-ranked cluster labels derived 
from an UMLS-Metathesaurus using a scoring function. To avoid non-clustered 
documents, an iterative scheme, called auto-clustering was developed and this 
allowed mapping previously uncategorized documents during the initial 
grouping process to relevant clusters. The efficacy of this document clustering 
and visualization platform was evaluated by expert-based validation of 
clustering results obtained with unique search terms. Compared to normal 
clustering, auto-clustering demonstrated better efficacy by generating larger 
numbers of unique and relevant cluster labels. Using this implementation, a 
Parkinson’s disease systems theory model was developed and studies based on 
user queries related to neuroscience and oncology have been showcased as 
applications.  

Keywords—Online scientific databases, natural language processing, systems 
biology, automated clustering, visualization. 
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1 Introduction 

In recent years, with advancements in scientific research, the numbers of articles in 
online medical and biological databases have increased substantially requiring 
automated tools that relate results across disciplines [1][2][3].  Biomedical Natural 
Language Processing (BioNLP)  could help reconstruct and extract knowledge 
through the visualization of queries [4][5]. Natural Language Processing (NLP) is a 
sub-domain of artificial intelligence (AI) which employs computational methods to 
reconstruct spoken or written human language [6]. BioNLP involves information 
extraction and processing text and literature  related to biological sciences [7][8][9] 
along with organized reconstruction and representation of document information [10], 
[11].  

The study of complex biological systems like the brain and nervous system 
involves translational sciences with multidisciplinary approaches [12]. Translational 
sciences, an interdisciplinary branch of the biomedicine combines different 
disciplines, resources, expertise, and techniques within biomedical technology to 
promote enhancements in prevention, diagnosis, and therapies [13]. In research 
domains such as neuroscience, seamless integration of data from different sub-
disciplines allow exploring neural and behavioral function and dysfunction. Today’s 
translational sciences rely on complex biological organization and processes that 
relate genes and molecular constituents to cellular, circuit and behavioral effects. This 
is further utilized in systems biology as it connects the biological information transfer 
with different subdomains [14]. Studies on proteomics and genomics related to 
neurological and oncological conditions have led to literature exploration tools. 
Clinical researchers often seek relationships between molecular mechanisms 
involving genes, receptors, cells, tissue functions, organs and behavior in order to 
connect pathologies to their underlying mechanisms. Such relationship patterns often 
exist within multiple scientific documents and text-related data mining and analytics 
allow formulation of useful connections within databases. For example, a study on 
fibroblast growth factors demonstrated that ataxic or epileptic patterns involving a set 
of clinical symptoms could be attributed to dysfunctions, including that of sodium 
channels and intrinsic excitability of certain neurons [15].  

Tools like NeuroExtract [16], Blumia [17], Textpresso for Neuroscience [18] and 
PubMedPortable [19] have been developed to extract information by mining 
biological data from online databases. Other information retrieval systems like BioIE 
[20], BioRAT[21], iHOP [22] and Carrot2 [23] allow users to extract information 
from published biomedical literature. In some NLP tools, retrieved data was 
organized into different groups by using MeSH class [24],  by employing machine 
learning (ML) algorithms [25][26] or based on gene ontology [27]. Neuroscience 
Information Framework Literature (NIF-Literature) is another tool [28][29][30][31], 
which allows refined search of neuroscience literature. Common issues related to 
BioNLP also present in many software tools include absence of visualization front-
end, graphical representations of feature subset relationships among clustered articles, 
large number of unclustered documents and absence of domain-relevant cluster labels. 
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To overcome these issues, this paper employs querying, clustering and 
visualization methods packaged as a BioNLP platform intended to help model 
relations in systems biology and for mapping multi-disciplinary literature 
visualization for translational medicine. The software attempts to resolve the issues 
present in existing platforms, namely, non-clustered documents through a scored auto-
clustering approach, reverse mapping scientifically relevant MeSH terms as cluster 
labels and a weighted graph-based visualization. The paper also highlights the 
validation of the tool comparing neuroscience and molecular biology queries. 

2 Machine Learning and Natural Language Processing  

Machine learning has been used in addressing BioNLP aspects including text 
classification [32], tagging structured models [33], parsing and extraction [34], and 
unsupervised learning with structure induction and document clustering [35]. In a 
previous study [36], performance of several machine learning algorithms on BioNLP 
datasets was evaluated. Eight classifiers-based learning models on 2000-point dataset 
with MeSH terms as features showed ~78.2% training accuracy, while the root mean 
square error was <0.26. Among the clustering algorithms tested, k-means and 
expectation maximization demonstrated the highest accuracy. A study [37] on several 
clustering algorithms reported that LINGO [38] and STC [39] aggregated 17% more 
documents than k-means. As a choice for this implementation, based on clustering 
accuracy (see Table 1), Suffix Tree Clustering (STC) and LINGO suited better for 
document clustering and were employed. Grouping error for LINGO and STC was 
significantly less compared to k-means. 

3 Methodology 

This BioNLP implementation (referred to also as ABioNLP) allows retrieval of 
research articles from PubMed based on a user query and employs a weighted 
repetitive clustering approach to resolve a commonly observed NLP issues, including 
the large number of articles without relevant cluster labels. This web-based literature 
retrieval platform implements a pipeline of four modules (Fig. 1). First module 
involves documents retrieval from online literature database and incremental storage 
of pre-processed data in a local database. Second module performs document 
clustering based on algorithm selection (LINGO or STC) and mode of clustering 
(normal or auto clustering).  The third module in the pipeline involved validation of 
the generated cluster labels by mapping with an online service, metathesaurus, and 
storage of clustering results in a graph database. In the fourth module, visualization of 
results was facilitated using interactive graphical interface. 
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Table 1.  Comparative analysis of performance of various document-clustering algorithms. 

3.1 Document Retrieval and Pre-processing 

The software implementation included a simple password-based user 
authentication procedure [40] facilitating user-specific search history could be 
recorded. ESearch from Entrez E-Utilities [41] was used to retrieve the PubMed ids 
corresponding to search word in an XML format. Through the graphical user 
interface, users could modify parameters like number of documents, number of 
clusters, selection of algorithms and mode of clustering, while querying PubMed. A 
database was implemented in MySQL for storing retrieved queries that comprised 
document information attributes including PubMed_id, author_list, journal_name. 
MeSH_words, abstract and other details. For every query retrieved using efetch (from 
E-utilities), the unique identifier for scientific articles was recorded into the local 
database along with other attributes, but without repetitions to avoid data redundancy.  

In the pre-processing pipeline, abstracts were subjected to stop-word removal, 
stemming and lemmatization [42]. An informative abstract acts as a surrogate for the 
research article as it describes methods, results and evidence from the study [43]. As a 
trade-off for performance, instead of full text articles, abstracts were used for 
clustering. Thirty key terms extracted from an abstract using TF-IDF method [44] and 
PubMed-retrieved MeSH terms represented a retrieved scientific article. The locally 
stored database involved extracted features from several scientific articles attributed 
to queries. 

Clustering 
Algorithm Search word 

Semantics 
connectivity 

between search 
words 

Document 
Density 

Outlier 
Percentage 

Grouping 
Error on 
a scale of 

0 to 10 
LINGO Cancer Oncovirus 

fibroblast 
High High 21 0.37142 

Cerebellum granule 
neuron ataxia 

Medium  Low 11 0.36111 

Cerebellum pain Low Medium  22 0.32352 
STC  Cancer Oncovirus 

fibroblast 
High High 0 0.33333 

Cerebellum granule 
neuron ataxia 

Medium  Low 0 0.33333 

Cerebellum pain Low Medium  14 0.26666 
K-Means  Cancer Oncovirus 

fibroblast 
High High 0 0.48 

Cerebellum granule 
neuron ataxia 

Medium  Low 0 0.52 

Cerebellum pain Low Medium  1 0.52173 
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Fig. 1. Architecture of ABioNLP platform. Implementation pipeline included data retrieval, 

document clustering, cluster validation and visualization. The software tool processes 
queries, maps cluster labels and allows visualization in text and graph formats 

3.2 Clustering 

The choice of clustering algorithms was based on estimations of accuracy of the 
learning models [36]. For LINGO and STC, normal clustering (single-run) and 
iterative automated clustering (referred as auto-clustering) modalities were 
implemented. When normal clustering was performed, STC generated many 
disambiguous cluster labels and LINGO generated several non-clustered documents 
(assigned to a nondescript “other” cluster). To address these issues, auto-clustering,  
an iterative scheme that employs a differential evolver [45] to optimize clustering 
parameters, was introduced. The clustering algorithms, LINGO and STC were 
implemented based on an open source API [46]. Cluster entropy was reduced by 
iteratively changing the cluster assignment of those articles within the non-clustered 
group.  Among algorithmic parameters, LINGO’s ‘term weighing’ parameter (Fig. 2. 
and see Table 2) and ‘base-cluster merging threshold’ parameter (Fig. 3. and see 
Table 3)in STC  allowed maximally reallocating documents from non-clustered to 
valid clusters also fine-tuned the clustering accuracy. This iterative process of auto-
clustering was terminated when resulting clusters remained unchanged in consecutive 
iterations. An additional process called “re-clustering” or repetitive clustering was 
incorporated to allow the generation of sub-clusters. The user could select re-
clustering by right clicking on the displayed cluster label. Clustering efficiency was 
calculated by dividing number of unique clusters formed with time taken and the 
number of research articles that were not clustered, for both auto and normal 
clustering methods. 
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.  

Fig. 2. Effect of Parameters on LINGO. Term weighting and factorization added to maximal 
unique cluster names. 

Table 2.  LINGO and the percentage of unique cluster labels 

Parameters Percentage of Unique Cluster Labels 
Term weighing parameter 80 
Factorization method 59 
Maximum word document frequency 54 
Factorization quality and cluster label assignment method 50 
Maximum metric size 41 
Phrase document frequency 40 

 
Fig. 3. Effect of Parameters on STC. Fine tuning base cluster merging threshold and maximum 

word document ratio helped generate maximal unique cluster labels. 
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Table 3.  STC and the percentage of unique cluster labels 

Parameters Percentage of Unique Cluster 
Labels 

Base cluster merging threshold 55 
Maximum word document frequency 45 
Document count boost and minimum document per base cluster 31 
Maximum general phrase coverage 29 
Minimum word document recurrence 28

3.3 Cluster Validation and Scoring

A common problem with document clustering was the generation of imprecise 
and/or scientifically-irrelevant cluster labels [47].  In order to overcome this issue, 
ranking of cluster labels based on its scientific relevance was performed by mapping 
them using MetaMap [48]. A cluster score (Cs), computed from generated clusters, 
involving the number of cluster labels and document count within the cluster 
indicated relevant cluster labels before mapping with MeSH terms.  Post mapping, 
another score (MM) for all cluster labels generated by MetaMap was included in the 
computation of a weighted final score (1), that defined top ranked cluster labels 
representing the query. 

 (1)  
Where, NC was the number of cluster sets where the given cluster name was 

present in, SC was the size of cluster, MM was the MetaMap score and CS was the 
clustering score. Thirty clusters identified by descending order of scores were selected 
as the final dataset for graph visualization. In order to further distribute articles from 
large clusters, repeated clustering (re-clustering) was incorporated, which allowed 
users to repeatedly cluster already formed clusters (Fig. 4.). 

3.4 Graph Storage and Visualization 

The details of top-ranked thirty clusters including their labels, contents, 
interconnections and final score were stored in a MySQL table. Since graphically 
displaying relationships among clustered research articles based on their content 
similarities using Cypher Query Language [49] could enhance system’s theory 
exploration of biological literature, interactive radial node visualization of cluster 
results was implemented. A copy of the processed data was stored in Neo4j [50]. 
Converted as JSON objects from this database, circular graphs with radii proportional 
to the size of clusters [51] were used for visualization. Documents were represented as 
nodes and relationships as edges [52] as in a property graph model [53]. The radial 
node-link graph-based data visualization was implemented using Javascript InfoVis 
Toolkit (JIT) [54]. Documents within clusters along with their abstract and other 
details were also made available on the right section of the screen (Fig. 5). 
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3.5 External Evaluation and Clustering Accuracy 

Since tuple-analysis does not provide a difference metric for overall quality of the 
system [55], manual evaluation of clustering accuracy was performed to validate 
cluster quality [56]. For all case studies, clustering quality [57] was evaluated using 
extrinsic measures involving domain experts. Query reformulation related case studies 
involved normal or auto-clustering by varying number of articles retrieved across a 
range 50-100-150-200 to highlight the commonness with increase in number of 
retrieved articles. 

The ABioNLP platform was implemented using HTML, Javascript and calling 
Java APIs with MySQL, Neo4j databases and the source code is available at 
https://github.com/compneuro/ABioNLP 

 
Fig. 4. Iterative Clustering to handle non-clustered documents: Iterative clustering enhances by 

re-grouping the articles, which were not previously listed under a cluster; and can be 
executed by right clicking on the circle area. 

 
Fig. 5. Auto-clustering in ABioNLP. For a query “cerebellum granule neuron ataxia” 

represented by a star, auto-clustering generated document clusters represented by 
circles with diameter representing cluster size. 
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4 Results 

The efficacy of this BioNLP tool was extrinsically evaluated by comparing the 
clustering results obtained for unique search terms. The aim of using human experts 
was to satisfy better understanding of document relevance within cluster and the 
limitations. Towards evaluation and testing, multiple runs of document retrieval were 
performed by varying the search terms and number of documents to be retrieved. We 
tested (i) the platform’s capability for multilevel data explorations, (ii) the accuracy of 
query reformulations in document searches and (iii) whether effective visualization of 
the clustering results for applications in systems theory and biomedicine. In addition 
to this, querying was conducted to evaluate algorithmic parameters, to compare the 
performance of normal and auto-clustering algorithms with STC and LINGO and the 
accuracy of clusters using subject expert’s manual verification. Performance 
indicators were processing time and clustering accuracy. Both normal clustering and 
auto-clustering with LINGO and STC algorithm were evaluated. The visualization 
included a node-link graphical representation with radial graphs representing size of 
clusters with documents grouped together based on the similarity to other research 
articles. Users could click on labels to see the grouping of the data. Processing time 
included time taken for query retrieval and document clustering performed locally. As 
designed, auto-clustering required more runtime than normal clustering due to 
repetitive processing (see Table 4). 

Table 4.  A comparison of computational cost (time) for search and post-query processing. 

 PubMed Article Retrieval Time for Our Implementation 
No. of 

Articles to be 
Retrieved 

Article 
Retrieval Time 

(Seconds) 

Normal 
Clustering 
with STC 

Normal 
Clustering 

with LINGO 

Auto 
Clustering 
with STC 

Auto 
Clustering 

with LINGO 
100 3.92 S 5.088 S 5.15 S 31.43 S 34.09 S 
200 5.347 S 7.396 S 8.178 S 30.04 S 54.74 S 
500 Not available 8.002 S 8.38 S 31.07 S 54.59 S 

4.1 Manual verification of document clustering 

Since internal evaluation was related to algorithms [58], we evaluated the 
usefulness of the software tool through its cluster quality evaluated by experts and 
visualization relating documents to MeSH terms from the metathesaurus. Although 
labor intensive, generated clusters were evaluated with subject experts manually by 
counting the relevance of articles retrieved with respect to their assigned cluster 
labels. For the neuroscience domain, top 100 research articles were extracted from a 
query (terms: cerebellum, function, ataxia) and normal and auto-clustering using STC 
and LINGO algorithms were performed. In normal clustering, seven clusters were 
generated using both algorithms. The cluster labels were different for both algorithms 
and with LINGO, there was a set of non-clustered documents which were not mapped 
into any existing cluster labels.  

The average clustering accuracy for STC was 96.76% and LINGO was 94.52% see 
Table 5 & Table 6). The fraction of non-clustered documents produced by LINGO 
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was 62%. Using auto-clustering, 30 exclusive clusters were generated by both 
algorithms. The clustering accuracy for both the algorithms (data not shown) was 
greater than 95%, while there was no un-clustered documents for LINGO. 

Table 5.  Expert verified cluster results for STC with normal clustering 

Cluster Label Correctly  
Clustered 

Incorrectly  
Cluster 

Cerebellar, Ataxia, Cell 100 0 
Cerebellar Granule Neurons 24 1 
Spinocerebellar Ataxia 14 0 
Parallel Fibers 18 3 
System, Central Nervous System 26 0 
Voltage gated channels  22 1 
Cerebellar Purkinje Cells 14 0 

Table 6.  Expert verified cluster results for LINGO with normal clustering 

Cluster Label Correctly  
Clustered 

Incorrectly  
Clustered 

Motor coordination 14 2 
Cell Migration 11 1 
Postnatal CNS 6 1 
DNA Damaged Response 5 0 
Ataxic Gait 3 0 
Syrian Hamsters 2 0 
Non-clustered 60 2 

 
Article retrieval and document clustering were also performed for an oncology 

related search word (query terms included: MMP, metastasis, oncovirus). 100 
research articles were extracted and generated 7 clusters for normal clustering (Fig. 6) 
and 30 clusters for auto-clustering (data not shown) with LINGO and STC. In auto-
clustering approach, it was found that the tool indicated clustering results with 95% 
accuracy and there were no non-clustered articles with the STC algorithm. STC with 
normal clustering facilitated faster retrieval and LINGO with auto-clustering 
generated precise clusters. 

4.2 Computing Efficacy across Normal and Automated Clustering 

Query retrievals were performed four times with normal clustering while varying 
number of clusters (10, 20, 30 and 40) with number of articles being retrieved set to 
200. For an information retrieval system using document-clustering approach, 
efficiency of the retrieval was proportional to number of unique clusters formed with 
lesser processing time and minimal number of non-clustered articles. Mean and 
variance of cluster quality or efficiency were calculated (Fig. 7).  

Similarly, with auto-clustering, cluster quality assessments with experts were 
performed by retrieving 200 research articles and the experiment was repeated four 
times. For each iteration, LINGO generated 243 unique clusters in 54.65 seconds and 
STC generated 73 unique clusters in 30.45 seconds (averaged for four iterations). 
Average efficiency was 4.45 unique clusters/second for LINGO and 2.36 unique 
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clusters/second for STC (see Table 7). From this, experiment it can be deduced that 
auto-clustering outperforms normal clustering in retrieving the most relevant research 
articles. Even though LINGO performs better with Auto-clustering, since the STC 
algorithm produces better accuracy with Normal clustering method, both STC and 
LINGO were retained in the platform. 

 
Fig. 6. Accuracy from subject expert verified auto-clustering for the cancer-related query. A) 

For LINGO, there are more than 85 articles out of 100 which were grouped into “non-
clustered” B) For STC algorithm also has generated significant cluster labels.  
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Table 7.  Efficiency comparison of LINGO and STC. LINGO with auto-clustering generated 
results that were more accurate. 

Clustering 
Algorithms 

Avg. Time Avg. no of Unique 
concepts 

Estimated Efficiency Measure 

LINGO 54.65 243 4.44 
STC 30.45 72 2.36 

 
Fig. 7. Comparison of normal clustering between LINGO and STC algorithms. LINGO had a 

large number of unclustered documents compared to STC. Clustering efficiency was 
considerably high for STC compared to LINGO with increasing number of articles. 

4.3 Search Efficacy: Document Clusters Mapped Inter-Relationships among 
Research Articles 

To quantify usability in establishing inter-connections between different sub-
domains of neuroscience through research articles, multiple clustering runs were 
carried out to explore common characteristics among multiple queries.  

Search retrieval and clustering for 50 articles with search terms (“Gene Cerebellum 
Epilepsy” and “Cerebellum Granule Neuron Epilepsy”) relating to two different sub-
domains of Neuroscience, namely physiology and genetics, were performed for 
evaluating the BioNLP platform’s functionality.  

For the search term related to neuro-genetics, 23 unique cluster labels were formed 
from 315 available articles. Out of which, 9 cluster labels were exclusively related to 
genetics whereas 8 cluster labels were related to physiology and 6 cluster labels were 
related to both neuro-genetics and neurophysiology. Similarly, for a search word 
related to neurophysiology, 25 unique cluster labels were formed from 68 research 
articles, of which 20 cluster labels were related to physiology and 5 clusters 
represented both (Fig. 8). 
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Two unrelated search terms “ataxia Purkinje neuron” and “multiple sclerosis neural 
circuits” were used to perceive overlaps between pathology, physiology, molecular 
biology and genetics sub-domains. Seven cluster labels for the ataxia-Purkinje neuron 
query and four cluster labels for the multiple sclerosis-neural circuits query among the 
30 cluster labels were incorrectly grouped as per human expert evaluation.  With 
smaller numbers of documents, being extracted related to a query, the platform was 
faster in identifying significant connections between multiple sub-domains of 
biomedical sciences. 

 
Fig. 8. Extracting inter-domain relationships from queries exploration. For a “gene cerebellum 

epilepsy” (A) 15 clusters were attributed to neurogenetics and 14 clusters were 
attributed to neurophysiology with 6 common clusters (C). For a “cerebellum granule 
neuron epilepsy” query (B), 5 clusters belonged commonly (D) to neurogenetics and 

neurophysiology while 30 clusters were attributed to neurophysiology. 

4.4 Document Clustering as Query Reformulation 

To evaluate document clustering for query reformulation, varying numbers of 
articles were retrieved for neuroscience search terms namely “ataxia” and “cerebellum 
granule neuron ataxia”. While varying number of documents to be retrieved (50, 100, 
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150 and 200), the relevance of the cluster labels and commonness of research articles 
across different groups were evaluated. 60% of the cluster labels remained 
unmodified during both the queries, whereas the other cluster labels evolved 
according to relevance to specific search terms. (Fig. 9A, 9B and 9C). The average 
numbers of common articles within the clusters was 43 when total number of articles 
retrieved was increased from 50 to 100.  

 
Fig. 9. Query reformulation and visualization. Varying number of retrieved articles generated 

distinctive cluster sizes and groups. A) With the number of documents to be retrieved 
set to 50, clusters were sparser although all 30 top cluster labels were ranked. B) With 
number of articles set to 100, clusters relating critical MeSH terms became prominent. 
Clusters when the article count was increased was 100. C) With 200 documents, the 

relevance of cluster labels assigned to a cluster became evidently significant. D) 
Improvement of cluster results (average cluster size and article overlap) with number of 

retrieved articles increased. 

For an increase in number of articles to be retrieved from 100 to 150, there were 55 
common articles. 104 common articles were observed when the number of retrieved 
documents was increased from 150 to 200 (Fig. 9D). Higher number of documents 
may improve the relevance of cluster labels assigned to a cluster.

4.5 Document Clustering for Systems Biology Modelling 

The application of  this software platform in automated curation of molecular 
signaling pathways was evaluated through a systems biology study [59], aiming the 
characterizing of neurodegeneration and understanding pathophysiology of 
Parkinson's Disease (PD). Using multiple queries for reconstruction of dopamine 
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pathway, α-synuclein aggregation, effect of tau phosphorylation on formation of 
neurofibrillary tangles and cell death and, role of production and activation of reactive 
oxygen species that lead to apoptosis, the molecular signaling mechanisms were 
modelled using biochemical systems theory. For a search term “alpha synuclein in 
Parkinson's diseases”, PubMed search retrieved 15839 articles as a list without any 
categorization. The search terms when submitted to the BioNLP software provided 30 
different clusters of which 9 clusters highlighted the most relevant 18 articles from 
which the data for this study was collected. For other search terms: “Parkinson's 
disease”, “Dopamine pathways in Parkinson's disease”, “role of alpha synuclein in 
Parkinson's diseases” generated 12 articles (from more than 18000 articles). Similarly, 
for finding the information related to “α-synuclein aggregation”, “parkin” and “ROS”, 
the number of articles recovered through query retrieval (after auto-clustering) was 14 
(from >10000),7 (>15,000) and 8 (>11800) respectively. Through four searches, main 
references to Parkinson’s disease and concentration of proteins of related genes 
establishing the PD pathway were retrieved. Top scored articles were directly a 
reference and a key citation in the published study [60]. 

5 Discussion and Conclusion 

The design allows to identify the subject level interconnections between different 
sections of a scientific domain, providing users with a document browsing interface. 
The software platform employed different learning models for scientific document 
analysis, combining document clustering with mapping of MeSH terms and generated 
domain-relevant cluster labels and extended domain-level inter-relationships among 
various documents queried from PubMed. With the range of ML techniques now 
being applied to BioNLP, the human expert evaluation of cluster quality suggested the 
clustering performance was relatively good and a tractable NLP implementation was 
facilitated by using the mapping process of cluster labels. By a few queries and their 
visualizations, this reliably allowed building literature dependent systems model of 
Parkinson’s disease [60] that reconstructed predictions dysfunction and kinetic 
changes of activity-derived pathways of dopamine, α-synuclein aggregation, tau, 
parkin and ROS in dopaminergic neurons. Such visualizations are crucial for 
exploiting the community-centered approach in systems biology. From an 
implementation stand point, increasing sizes of data and literature in PubMed and 
repeated clustering adding to computational costs, incremental updates in local 
repository optimized time during the document clustering process.  

While comparing to existing tools, the BioNLP platform replaces some of the 
issues still seen in state-of-the-art tools being used by biomedical and neuroscience 
researchers. Uncategorized documents generation during a single run clustering as 
observed in Carrot2 [23] was overcome in this implementation by auto-clustering. 
ABioNLP platform uses a radial graph visualization for easy to retrieve results unlike 
in other text mining tools like NeuroExtract [16], Textpresso [18] and iHOP [22] 
which lacks a visualization component, which was crucial to manually curate 
experimental data for pathway reconstruction in systems modeling. The platform also 
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used the concept of using MeSH class as well as categorization of abstracts as in some 
tools like XplorMed [24] and GoPubMed [27]. Although search and query 
reformulation in aforementioned BioNLP platforms are reliable, they have issues 
related to clustering or categorization including listing a significantly large number of 
unrelated articles as a cluster, absence of meaningful or domain-relevant cluster labels 
or an appropriate visualization front-end for evaluating relationships among clustered 
articles and have been by addressed by this BioNLP platform. 

Since computational cost was increased due to clustering and mapping, the runtime 
efficiency was increased by saving query results in a local database and retrieving 
non-listed documents based on the search results. Mapping cluster labels to MeSH 
terms helped to avoid irrelevant cluster labels and improved machine learning 
accuracy [36]. By using different machine learning algorithms, it was found that 
reverse mapped data showed higher accuracy compared to data extracted directly 
from retrieved documents. Although, computationally expensive higher number of 
documents improved the relevance of cluster labels assigned to a cluster. This may be 
attributed to clustering algorithm’s learning model. In addition to a list, visualization 
as different circles with varying diameter that represented the size of the cluster, 
allowed users estimate cluster relevance related to the query. The node-link radial 
graph representation of the search results allowed quick visual inspection of 
interrelations between sub-domains and alternate clusters.  

The online retrieval time was regulated by allowing the user to specify the number 
of articles to be retrieved. As expected, the number of common articles between these 
different sub-domains increased with increase in total number of articles retrieved. 
This may be due to the MeSH-mapping with MetaMap biasing unique domain-
specific keywords. As number of retrieved documents increased, new and more 
search-relevant cluster labels appeared. When manual verification with help of subject 
experts from various domains was carried out to evaluate the clustering accuracy of 
both algorithms, STC performed better than LINGO during normal clustering. This 
may be attributed to the large non-clustered category of “other documents” generated 
by LINGO. However, if auto-clustering is performed on the LINGO clustering results, 
performance became clearly superior relative to clustering by STC. 

As showcased in the case study on Parkinson’s disease, one of the advantages was 
that it buffers users from metadata and ontologies while providing complex relations 
between research articles aggregated as clusters with medically relevant labels. 
Instead of many searches, employing four queries, the pathway studies for prediction 
of PD signaling related 30 key articles from a PubMed list of more than 10000 
research papers. This attributes significantly in reducing literature survey-work time 
for researchers who study biology and diseased conditions in animals and humans. 
While focusing on reducing literature data deluge for researchers, the generality of the 
design allows this search utility to be incorporated in any of the existing Omics and 
BioNLP platforms and tools. 

With management of large diversity of data, linking experimental data to models 
and integrating translational exploration and comparisons, this software platform 
facilitates easy extraction of concepts from research articles and facilitates BioNLP, 
systems theory and modelling for data sciences. Without focusing only on BioNLP 
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methods, this design sheds a new perspective into architectural modelling of an 
information retrieval system that can be empowered as a step towards using public 
data sets and rebuilding ontology-based networks while accessing available databases 
in the multidisciplinary field of systems biology. Additionally, this BioNLP platform 
saves reading time for researchers and clinicians since retrieved queries can cluster 
primary references limiting the many thousands to a fewer number as in the case of 
the systems biology case study. Although the current scope of the platform was 
restricted to medicine and biology, with any other normally inter-operable document 
archiving databases and data streams, this can be enhanced for several applications. 
With capability to scale for big data analytics and streaming data analysis, this can be 
effectively re-implemented to include scaling deep learning models. 
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