
Paper—Classification and Processing of Big Data in Sensor Network based on Suffix…

Classification and Processing of Big Data in Sensor
Network based on Suffix Tree Clustering

https://doi.org/10.3991/ijoe.v15i01.9785

Jun Tian(*), Lirong Huang
Foshan Polytechnic, Foshan City, Guangdong, China

juntianeu18293@163.com

Abstract—Aiming at the perception data acquired by the widely used, fast-
developing but still not perfect wireless sensor network system, a relatively
complete and universal system for the collection, transmission, storage and
cluster analysis of perception data is designed. Perception data is spliced and
compressed at the node and reconstructed at the base station, the problem of the
acquisition of perception data and energy consumption of transmission is
optimized, the distributed storage system is established, and the data reading
mechanism and data storage architecture are designed accordingly. The data
acquisition protocol and the traditional protocol, the storage system itself and
the Oracle database system, and Standard Deviation and Eigensystem
Realization Algorithm are respectively adopted for comparison test. Based on
Standard Deviation algorithm, the operation of suffix tree clustering is carried
out, and the general steps of suffix tree clustering are studied and the structure
of perception data and the characteristics of storage are adapted, and the data
classification operation based on suffix tree clustering is completed. The results
show that proposed Standard Deviationalgorithm algorithm not only inherits the
efficiency of the classical algorithm for processing big data, but also has
obvious effect on large-scale discrete data processing, and the efficiency is
obviously improved compared with the traditional method.

Keywords—Sensor network, big data, storage system, suffix tree, clustering

1 Introduction

With the development of the Internet, big data technology has gradually replaced
traditional network technology and has become the trend and mainstream of the
current Internet development. Its variety and large storage space make the storage and
utilization of big data bring great challenges to existing storage technologies. The
sensory data of wireless sensor networks is an important part of current big data. It
plays an important role in people's daily life, scientific research, business data
analysis, service industry and even military field. However, the processing level of
this part of big data is still unable to meet the requirements of relevant industries and
fields, and academic and industrial circles have conducted extensive and in-depth
research on it.

iJOE ‒ Vol. 15, No. 1, 2019 171

Paper—Classification and Processing of Big Data in Sensor Network based on Suffix…

Sensor network's perceived data has become an important part of big data family
due to its large number and considerable increment. However, unlike most existing
types of big data, the amount of single acquisition is small and frequently acquired
during the process of acquiring data. The characteristics of large-area distribution of
sensing nodes make the sensing data itself have its unique characteristics of high
dispersion, frequent reading, high storage frequency and complex data. Frequent
transmissions will inevitably result in enormous precious energy costs, and delayed
transmission will lose the timeliness necessary in areas such as military. Therefore,
the problem of real-time data transmission due to the limited energy carrying capacity
of the node itself has always been the research core of sensory data acquisition [1].
Generally, a single machine for big data design (such as a database server assumed by
a traditional database management system such as Oracle, MySQL, DB2, etc.) or a
distributed storage system (such as a distributed database server group such as HBase
or Hadoop) only consider the optimization of large data storage and massive data read
and write aging, and do not pay attention to the unique data category of perceived
data. Storing sensory data on these systems imposes significant limitations on the use,
read, write, and categorization of data. Therefore, academics and industry are
studying the energy-saving issues of real-time data transmission. It is also working on
a big data storage system for storing discrete content such as perceptual data with the
above characteristics.

2 Literature Review

At present, the sensory data acquired by the sensor network is first concentrated on
the nodes and transmitted to the base station, and then the data is transmitted to the
storage system through the network and utilized. However, most of the current
research focuses on the assurance of overall architectural design and privacy
protection. Glöckner et al. (2017) introduced the concept of the latest scale-free
network into the traditional architecture of mature wireless sensor networks in the
research and architecture research of wireless sensor network overall protocol, which
brings good scalability to the network and great flexibility to the network scale [2].

In another direction, research on privacy protection has received increasing
attention. For example, a number of latest achievements in data encryption and
privacy protection for sensor network data transmission continue to emerge.
However, for an important aspect of data acquisition, the data transmission from the
sensing node to the base station and the data compression in the sensing node have
been rarely achieved in recent years, so that in a very good network architecture, the
initial processing and transmission overhead of the data is large, resulting in limited
node life, low data transmission efficiency, and can’t effectively adapt to the need of
high-speed wireless sensor networks for frequent data transmission. The energy-
saving methods proposed by Qin et al. (2016) sacrifice timeliness. When the amount
of data reaches a certain scale (the value of the disk size occupied by a certain data), it
is compressed according to the traditional file system data compression method, the

172 http://www.i-joe.org

Paper—Classification and Processing of Big Data in Sensor Network based on Suffix…

data is then transmitted. This method of data compression is obviously not applicable
in areas with high timeliness requirements such as military and meteorological [3].

Abdullah et al. (2018) believe that in terms of data storage, the sensory data should
be updated at any time and stored comprehensively. Large-scale data sets using
traditional relational database systems such as Oracle MySQL or other stand-alone
storage systems obviously cannot meet the storage requirements of large-scale data
such as perceptual data. Even the latest architectures such as distributed storage
structures and disk array systems recently proposed by traditional database vendors,
due to historical reasons, for the data read/write or update operation, a process is
established for each transaction, in high concurrency, it is easy to cause system
resources to run out, causing the system to crash or even crash, which will seriously
affect other service programs deployed on the same physical machine, resulting
database systems incapable of being well-suited for reading and writing data such as
perceptual data that may have extremely high concurrent read and write operations
[4].

Makhoul et al. (2015) believe that due to the huge amount of data and rapid
growth, the traditional IOE combination widely used by the industry (ie IBM
minicomputer, Oracle database and EMC high-end storage device combination) will
no longer be suitable for a wide range of production environments because of its high
cost. With the continuous release of distributed storage systems such as GFS and
HDFS, full storage and cost savings of big data are realized. Its distributed
architecture has good scalability and can effectively adapt to large-scale data storage.
However, perceptual data is a special type of large-scale data with high dispersion,
high processing difficulty, frequent reading and writing, and complex categories. It
has high value, high effective information content, needs to be stored in a relational
database and has requirements for backup synchronization consistency, so it can’t be
stored in the NoSQL type database used by traditional big data [5].

The distributed system accurate repair method based on boundary part
representation designed by Wang (2018) et al. is aimed at the obstacles that the
storage system itself may encounter, and it has certain effects on server failure caused
by frequent storage of discrete data but not ideal. They proposed a caching strategy
based on end node freezing, but this strategy has a large hardware requirement and is
prone to data delay in large-scale concurrent architecture [6].

Maa et al. (2015) redefined and optimized the encoding of distributed storage
systems and strengthened the management of system storage, but it still cannot adapt
to a large number of small-scale frequent storage. Therefore, in the current distributed
storage system, there is no special research on the data such as the perceptual data,
which cannot meet the requirements of data consistency and transactional reading and
writing when the data is read and written [7].

Based on the above analysis, it can be concluded that for the sensing data from the
acquisition and storage links, most of the current research on wireless sensor networks
is aimed at the overall grasp and design protocols to improve the overall sensor
network, while taking into account the data transmission, or focus on data encryption
and privacy protection, there is less special research on data transmission, and the
implementation is more complicated or affects the timeliness of data transmission, so

iJOE ‒ Vol. 15, No. 1, 2019 173

Paper—Classification and Processing of Big Data in Sensor Network based on Suffix…

it is not universal. However, when the current wireless sensor network has been
applied on a large scale, changing the overall architecture and organizational form of
the network is too costly, resulting in the inability of these results in practice;
traditional relational database systems and stand-alone storage systems cannot meet
the needs of big data storage. The existing distributed storage system is mainly for the
storage of big data objects and relies too much on the file system itself; it can’t meet
the requirements of frequent additions and deletions, large number of classified
queries, and conditional queries. Distributed database systems evolved by traditional
transactional databases cannot effectively cope with high concurrent read and write
requirements.

3 Perceptual data classification processing based on discrete
dataset suffix clustering

3.1 Clustering based on suffix trees

In the current field of Internet data analysis, the use of suffix trees for clustering
operations is a well-recognized clustering method. The suffix tree clustering performs
clustering operations based on the index established by the suffix tree, and the
efficiency is based on the efficiency of the suffix tree construction algorithm and the
indexing efficiency of the suffix tree.

The clustering operation based on the suffix tree is divided into the following basic
steps:

Construct a query condition to prepare to retrieve the data to be read from the
storage system; perform data read operations on the corresponding fields by the
storage system, preprocess the text and extract features, store the feature values in the
form of discrete files or discrete strings on the host hard disk or hard disk array for
clustering operations; construct a suffix tree model of the collection with a suffix tree;
use the suffix tree model to select the base class, and finally merge the base classes
and use the base class connectivity to determine the clustering results.

Among them, the base class refers to the label of the edge of the suffix tree. The
similarity is described in the data classification and suffix tree and cluster related
operations, reflecting the overlap and similarity of the texts carried by the two base
classes, which are expressed as percentage values. When this percentage is greater
than a value, combine them. This value is called the merge factor. The merged base
class is grouped into a cluster, and this operation is repeated to determine whether
each of the two base classes can be classified into one cluster. The so-called base
class connectivity assumes that every two base classes belonging to the same cluster
are connected. According to the connection relationship, all the base classes that can
be connected are classified into one cluster. Then the clustering operation is
completed.

After the clustering is completed, the category information is provided to the user
who needs further operations and the current result is stored in the corresponding field
of the storage system.

174 http://www.i-joe.org

Paper—Classification and Processing of Big Data in Sensor Network based on Suffix…

Fig. 1. Perceptual node data compression and base station data analysis flow chart

Fig. 2. Field data splice schematic diagram

3.2 Introduction of ERA algorithm

So far, no suffix tree construction method has been found for optimizing discrete
data sets. Existing methods are not efficient for dealing with discrete data sets,
especially for highly discrete data sets.

Chandaka et al. (2017) proposed the latest and most important suffix tree
construction algorithm, namely ERA (Elastic Range) algorithm [8]. The algorithm has
both serial and parallel versions, and its serial version is more efficient than all other
existing methods, even faster when dealing with very long input strings with large
character tables. The algorithm has no merge phase, so its parallel version is easy to
implement. And its parallel version can run on shared memory and shared disk

Perceptual data

After splicing data
to be compressed

Compressed data
to be sent

Restored sensory
data

After
decompression to
be formatted data

Received
compressed data

Wireless data transmission
channel

Fields1 Fields2 Fields3 Fields4 Delimiter

Fields1 Fields2 Fields3 Fields5

Splice

iJOE ‒ Vol. 15, No. 1, 2019 175

Paper—Classification and Processing of Big Data in Sensor Network based on Suffix…

architecture systems including common multi-core desktop systems. There is no final
merge phase that makes the algorithm easy to implement parallel processing. As
shown in Figure 1, the algorithm partitions the problem horizontally and vertically.
The vertical partition divides the suffix tree into subtrees that can be loaded into main
memory. In order to maximize memory usage and reduce I/O overhead, the algorithm
groups the suffix subtrees and forms a virtual suffix subtree as a separate unit for
processing. The horizontal partition will process each suffix subtree or virtual subtree
independently in a top-to-bottom manner. This method is very novel and very
effective for suffix tree construction of data sets such as the human genome.
However, this method is much less efficient for discrete data sets such as log files of
wireless sensor networks or acquired perceptual data sets than continuous data sets,
and the time it takes is unacceptable in practical applications.

STD is improved based on ERA. The main purpose is to optimize the processing of
discrete data sets so that it can satisfy the perceptual data processing of highly discrete
wireless sensor networks, and then this algorithm is used to perform clustering
operations and complete perception data processing. The main work is:

An algorithm is proposed, which is optimized for the processing of discrete data
sets, and it uses the latest decomposition suffix tree without the idea of merging steps.
Converting data sets with content in different formats into strings for processing
enhances the versatility of the algorithm. It retains innovations in I/O access and other
aspects for most of the latest algorithms, ensuring efficiency in many aspects such as
I/O access, memory usage.

Fig. 3. Partitioning method

3.3 STD algorithm and efficiency analysis

In order to adapt to the actual situation of perceptual data processing, improve the
efficiency of the algorithm in processing discrete data sets, it is optimized primarily
for the vertical partition phase and adds the preparation phase before all partition
operations. The preparation phase of the latest definition will preprocess the input
data and prepare the input string and the alphabet containing all the characters in the
string. The alphabet will be redefined instead of continuing to use the previous
alphabet to ensure that this data structure can accommodate the processing of discrete
data sets.

In-memory Trie

Grouping Elastic Range

Vertical Partition

Horizontal
Partitioning

176 http://www.i-joe.org

Paper—Classification and Processing of Big Data in Sensor Network based on Suffix…

For the algorithm itself, the input data set can be a collection of data files that are
either logs or other data that can be read and stored as strings, or it can be a collection
of strings. Each file in the input collection creates a string and indexes each string to
ensure a meaningful correspondence between the string and the file. In this subject,
the input data may store discrete strings read from the storage system, strings of
corresponding fields obtained directly from the storage system or the corresponding
fields in discrete files. If the input dataset itself is already a collection of strings, then
all strings should be indexed to ensure that the next steps are effective.

A data structure named C-Member (character member) is defined that stores a
character of the input string and an array of indexes of all the strings in the input data
set that contain this character. The definition A is the alphabet, which is a collection
of C-Members corresponding to all the characters contained in the input data set. A is
defined as an index-based data structure, so all elements in A can be represented by
indexes or subscripts, which can minimize the storage space occupied by temporary
results.

Defines the data structure S-prefix, which contains the prefix of the input string
suffix and the array of the index of the string in the input data set corresponding to the
character in the prefix. Let p be an S-prefix, and Tp be the suffix subtree
corresponding to the prefix p in the suffix tree T. In Tp, each suffix corresponds to a
leaf node, and the number of non-leaf nodes is the same as the number of leaf nodes.
Then the size of the subtree Tp is 2fp*sizeof(node), where fp is the number of suffixes
prefixed by p. Therefore, Tp can be loaded into memory only when fp ≤ FM, where
MS is the size of the main memory space reserved by the system for the suffix
subtree, and

 (1)

In order to split the suffix tree into suffix subtrees that can be loaded into the MS,
the idea of variable length S-prefix is used, and the grouping operation is performed
after the preliminary division. This algorithm is designed for discrete data sets. When
generating S-prefix, the index of the string corresponding to each character will be
checked, so that the string index of S-prefix is the common index of all the characters
contained therein, otherwise the S-prefix will lose its meaning. First, the algorithm
creates a working set that contains all the S-prefixes corresponding to C-Member, that
is, creates an S-prefix for all C-Members and adds all S-prefixes to the working set.
Then the occurrence frequency of each S-prefix is calculated based on the entire input
data set, and all S-prefix whose appearance frequency is not greater than FM is
removed. Add a character to the end of the S-prefix that still exists in the working set.
It is required to have a public string index with S-prefix and replace the original index
of S-prefix with the public string index. Repeat this process until the working set is
empty.

The S-prefix obtained in the previous step is added to a linked list in descending
order of appearance frequency. First, the first node is added to a group, and then the
linked list is traversed sequentially. When the sum of the frequencies of all S-prefixes

)(*2M nodesizeof
MSF =

iJOE ‒ Vol. 15, No. 1, 2019 177

Paper—Classification and Processing of Big Data in Sensor Network based on Suffix…

in the group does not exceed FM, the nodes are sequentially added to the group, the
S-prefix with the most common string index in the process will be prioritized into a
group to maximize the memory usage and improve the processing efficiency to some
extent.

The above improvements make the algorithm very effective for the processing of
discrete data sets. The overall description of the preparation phase and the vertical
partitioning phase is shown in Figure 4.

Fig. 4. Diagram of description of the preparation phase and the vertical partition phase

The subtree construction process and the resulting suffix tree are introduced. This
algorithm does not have a final merge operation. Instead, it uses a dictionary tree
structure of resident memory to connect the subtrees.

First, two solutions for constructing subtrees are proposed: (a) string indexing is
utilized to improve the intermediate data structures used by all ERA algorithms to
accommodate discrete content of the data set; (b) the string corresponding to all
indexes included in the StringIndexes attribute of S-prefix is spliced. Scenario (a)
seems to work, but the cost of each query string and the memory overhead required to
boost the data structure will greatly reduce the efficiency of the algorithm. Therefore,
option (b) is selected, and the string SC is generated by splicing and stored on the
disk, and the ending character corresponding to each discrete string is marked to
avoid generating an invalid path in the suffix tree.

The following propositions are established for the suffix tree:

C-Member

Index

Chatacer

String Indexes

S-prefix

Prefix

String Indexes

concatenate

common

S-prefix

Prefix

String Indexes

S-prefix

Prefix

String Indexes

Every C-Member
corresponds to a

S-prefix

The Result Set of
S-prefixes

Grouping

178 http://www.i-joe.org

Paper—Classification and Processing of Big Data in Sensor Network based on Suffix…

Define SC as a string, and e is an edge in the suffix tree corresponding to the SC.
Label(e) is the label of e, and parent(e) is the unique parent of e and corresponds to
the string of the root node to the label corresponding to all edges on e.

Edge e connects to a leaf node if and only if pathlabel(e) appears only once in the
SC.

If label(e) = s1…sk, then the neutron string pathlabel (parent(e)) s1…si-1 is always
followed by si.

The edge e can be followed by the branch e1…ej if and only if pathlabel(e)si(1≤i
≤ j) appears at least once in the SC, where s1…sj are the first characters
corresponding to label(e1) ... label(ej), and they are different.

This proposition is used to optimize string access and form a general method of
constructing suffix subtrees. Since the non-sequential and non-local access process to
the string during the construction process will bring a lot of overhead, which leads to
a large amount of time overhead caused by upgrading the suffix tree, an improved
two-step processing method is adopted. The stitched string SC is used as an input
string, but it doesn't make sense to splicing the end character of one string with the
start character of another string to form an edge label, and this is an error in most
cases. Therefore, the end character is used to mark the end of each discrete string.
And the selection of the ending character depends on the specific situation.

Fig. 5. Algorithm implementation diagram

The horizontal partitioning operation of the ERA algorithm uses a preliminary
algorithm to generate two intermediate data structures, namely L and B, where L is an
array of leaf nodes and B stores branch information. The suffix subtree is then
constructed on the basis of L and B. This algorithm uses excellent ideas such as
buffers and intermediate data structures, which can improve the efficiency of the
algorithm.

iJOE ‒ Vol. 15, No. 1, 2019 179

Paper—Classification and Processing of Big Data in Sensor Network based on Suffix…

The work is to improve the ERA algorithm and make it possible to construct a
suffix tree for discrete data sets, and finally form the proposed algorithm - STD. To
achieve this goal, the string index attribute is added to all intermediate data structures
and the leaf nodes of the suffix tree, which makes the query of the original string
easier, and the algorithm is therefore more efficient in practical applications.

4 Efficiency Analysis

The latest preparation phase runtime complexity is O(n), and the other two steps
are very close to ERA. Only the improved data structure takes up more memory, but it
won't be much more and can be ignored as the data dispersion increases. The specific
storage space required for the algorithm to run depends on the actual situation,
otherwise too many subtrees will be generated.

The log files and DNA sequences of the nginx server network are used for testing.
The DNA sequence used is not large enough for a control trial, so the dataset is found
again on the Internet. Based on experimental data, this change has no effect on the
results of this experiment. The experimental results show that the time used by the
algorithm to construct the suffix tree is almost the same as that used by the ERA to
process continuous data set with the same size (not more than 5%). The used
experimental environment demonstrates that the data structures used herein are valid.
The experiment was also performed with a continuous data collection discrete data set
to compare the efficiency of STD and ERA. The experimental data is shown in the
table:

Table 1. Experimental data sheet

 ERA STD
Continuous data set 210 213
Discrete data set 280 218

To test the efficiency of the STD algorithm, experiments are performed with

discrete data sets and continuous data sets and compared to the ERA algorithm, the
experimental data is shown in Table 1. On a computer platform with two quad-core
2.67GHz Intel CPUs with 1G (human limit ulimit-v) memory, the STD algorithm is
used to process 4GB of DNA data for 213 minutes, almost the same as 210 minutes
under the same conditions of ERA. However, when dealing with discrete data sets in
this environment, ERA used 280 minutes for 4GB sensor network log files, while
STD used 218 minutes, and ERA spent 28% time more than STD.

It can be concluded from the above experimental data and its analysis that the
proposed STD algorithm not only inherits the efficiency of the classical algorithm for
processing big data, but also has obvious effect on large-scale discrete data
processing, and the efficiency is obviously improved compared with the traditional
method. This feature indicates that the STD algorithm can effectively deal with the
discrete characteristics of the perceptual data, and efficiently construct the suffix tree
structure for the perceptual data to complete the clustering operation.

180 http://www.i-joe.org

Paper—Classification and Processing of Big Data in Sensor Network based on Suffix…

5 Conclusion

In terms of sensing data acquisition and storage, firstly, aiming at the real-time
transmission requirements of data for most sensor networks and the special
requirements of energy saving for sensor networks, a new data node is proposed to
splicing and compressing the collected data. The impact of traditional data
compression on the real-time performance of sensing data collection has been broken,
and the energy-saving purpose of frequent transmission of small-scale data is realized,
and the network structure management of the sensing nodes managed by the base
station is also satisfied. The data collected by the base station from the node is
transmitted to the storage system in real time via the wired network. The data
structure is discrete, frequently read and written, large in scale, fast in growth,
complex in content, and has a strong structural feature in a single piece of data. It
requires targeted queries in the process of reading and writing and high concurrent
reading and writing. The design proposes a distributed and consistent storage system.
The system uses multi-machine group work, realizes fault-tolerant technology of
replication redundancy, and has targeted design for scalability and concurrency. For
the discrete content data sets such as perceptual data, an algorithm that can effectively
construct the suffix tree of discrete content data sets is proposed, which lays a
foundation for the clustering operation. Then, based on the algorithm, the suffix tree
clustering operation is carried out, and the general steps of the current suffix tree
clustering operation are studied. Based on this, the characteristics of the perceived
data structure and storage are adapted. Then, the data classification operation based
on suffix tree clustering is finally completed. Based on the above work, a set of
perceptual data processing system that can complete the real-time collection,
distributed storage, and clustering operation for the perceptual data is basically
constructed, and the expected design goal at the beginning of the topic is realized.
Experimental verification and theoretical analysis are arranged for each part of the
work, which proves the feasibility of the scheme.

6 References

[1] Gani, A., Siddiqa, A., Shamshirband, S., & Hanum, F. (2016). A survey on indexing
techniques for big data: taxonomy and performance evaluation. Knowledge and
information systems, 46(2): 241-284. https://doi.org/10.1007/s10115-015-0830-y

[2] Glöckner, F. O., Yilmaz, P., Quast, C., Gerken, J., Beccati, A., Ciuprina, A., & Ludwig,
W. (2017). 25 years of serving the community with ribosomal RNA gene reference
databases and tools. Journal of biotechnology, 261: 169-176. https://doi.org/10.1016/j.j
biotec.2017.06.1198

[3] Qin, Y., Sheng, Q. Z., Falkner, N. J., Dustdar, S., Wang, H., & Vasilakos, A. V. (2016).
When things matter: A survey on data-centric internet of things. Journal of Network and
Computer Applications, 64: 137-153. https://doi.org/10.1016/j.jnca.2015.12.016

[4] Abdullah, M., & Zamil, M. G. (2018). The Effectiveness of Classification on Information
Retrieval System (Case Study). arXiv preprint arXiv: 1804.00566.

iJOE ‒ Vol. 15, No. 1, 2019 181

Paper—Classification and Processing of Big Data in Sensor Network based on Suffix…

[5] Makhoul, A., Harb, H., & Laiymani, D. (2015). Residual energy-based adaptive data
collection approach for periodic sensor networks. Ad Hoc Networks, 35: 149-160.
https://doi.org/10.1016/j.adhoc.2015.08.009

[6] Wang, J., Liu, S., & Song, H. (2018). Fractal Research on the Edge Blur Threshold
Recognition in Big Data Classification. Mobile Networks and Applications, 23(2): 251-
260. https://doi.org/10.1007/s11036-017-0926-6

[7] Maa, H., Cakmak, H. K., Bach, F., Mikut, R., Harrabi, A., Süß, W., & Hagenmeyer, V.
(2015). Data processing of high-rate low-voltage distribution grid recordings for smart grid
monitoring and analysis. EURASIP Journal on Advances in Signal Processing, 2015(1):
14.

[8] Chandaka Babi, D., Rao, M. V., & Rao, V. V. (2017). Study of Association Rule Mining
for Discovery of Frequent Item Sets on Big Data Sets. International Journal of Applied
Engineering Research, 12(22): 12169-12175.

7 Authors

Jun Tian is a Researcher of Foshan Polytechnic, Foshan City, Guangdong,
528137, China. His research interests include big data.

Lirong Huang is a Researcher of Foshan Polytechnic, Foshan City, Guangdong,
528137, China. His research interests include clustering.

Article submitted 27 October 2018. Resubmitted 21 November 2018. Final acceptance 12 December
2018. Final version published as submitted by the authors.

182 http://www.i-joe.org

