Fault Diagnosis of Rolling Bearing Using Wireless Sensor Networks and Convolutional Neural Network

Liqun Hou, Zijing Li, Huaisheng Qu


Rolling bearings are widely used in modern production equipment. Effective bearing fault diagnosis method will improve the reliability of the machinery and increase its operating efficiency. In this paper, a novel fault diagnosis method based on WSN and CNN has been proposed to fully utilize the strong fault classification capability of CNN and the inherent merits of WSNs, such as relatively low cost, convenience of installation, and ease of relocation. The feasibility and effectiveness of proposed system are evaluated using the vibration data sets of seven motor operating conditions released by the Case Western Reserve University Bearing Data Center. The experimental results show the fault diagnosis accuracy of the proposed approach can reach 97.6%.


fault diagnosis;wireless sensor networks;convolutional neural network;rolling bearing

Full Text:


International Journal of Online and Biomedical Engineering (iJOE) – eISSN: 2626-8493
Creative Commons License
Scopus logo Clarivate Analyatics ESCI logo IET Inspec logo DOAJ logo DBLP logo EBSCO logo Ulrich's logo Google Scholar logo MAS logo