Simulation of Abnormal Physiological Signals in a Phantom for Bioengineering Education
DOI:
https://doi.org/10.3991/ijoe.v16i14.16941Keywords:
Biomedical signals, ECG, PCG, Breathing sounds, Simulation, modeling, Bioengineering educationAbstract
In clinical practice and in particular in the diagnostic process, the assessment of cardiac and respiratory functions is supported by electrocardiogram and auscultation. These exams are non-invasive, quick and inexpensive to perform and easy to interpret. For these reasons, this type of assessment is a constant in the daily life of a clinician and the information obtained is central to the decision making process. Therefore, it is essential that during their training, students of health-related subjects acquire skills in the acquisition and evaluation of the referred physiological signals. Simulation, considering the technological possibilities of today, is an excellent preparation tool since it exposes trainees to near real contexts but without the associated risks. Hence, the simulation of physiological signals plays an important role in the education of healthcare professionals, bioengineering professionals and also in the development and calibration of medical devices. This paper describes a project to develop synchronized electrocardiogram (ECG), phonocardiogram (PCG) and breathing sounds simulators that aims to improve an existing phantom simulator. The developed system allows, in an integrated way, to generate normal and pathological signals, being contemplated several distinct pathologies. For engineering education, it is also possible to simulate the introduction of signal disturbances or hardware malfunctions.
Downloads
Published
2020-11-30
How to Cite
Vieira, H., Costa, N., Alves, J. F. A., & Coelho, L. P. (2020). Simulation of Abnormal Physiological Signals in a Phantom for Bioengineering Education. International Journal of Online and Biomedical Engineering (iJOE), 16(14), pp. 107–121. https://doi.org/10.3991/ijoe.v16i14.16941
Issue
Section
Papers