Predicting Autonomic Dysfunction in Anxiety Disorder from ECG and Respiratory Signals Using Machine Learning Models

Authors

  • Abhilash Saj George Department of Computer Science and Applications, Amrita Vishwa Vidyapeetham, Amritapuri, India.
  • Arjun Vijayanatha Kurup Department of Computer Science and Applications, Amrita Vishwa Vidyapeetham, Amritapuri, India.
  • Parthasarathy Balachandran Department of Neurology, Amrita Institute of Medical Sciences, Kochi, Kerala, India.
  • Manjusha Nair Department of Computer Science and Applications, Amrita Vishwa Vidyapeetham, Amritapuri, India.
  • Siby Gopinath Department of Neurology, Amrita Institute of Medical Sciences, Kochi, Kerala, India.
  • Anand Kumar Department of Neurology, Amrita Institute of Medical Sciences, Kochi, Kerala, India.
  • Harilal Parasuram Dept of Neurology, Amrita Institute of Medical Sciences, Kochi, India.

DOI:

https://doi.org/10.3991/ijoe.v17i07.22581

Keywords:

Keywords— Autonomic dysfunctions, Anxiety disorder, Heart rate variability, Respiratory rate variability, Support Vector, Machine Learning

Abstract


Anxiety is a cognitive, behavioural, and biological response that prepares the individual to handle the stresses and conflicts of everyday life. The excessive appearance of this biological response is diagnosed as an anxiety disorder, which is often associated with Autonomic dysfunction (ADy). ADy is difficult to study in clinics with very few parameters available. Detection of ADy may not be possible/difficult in anxiety disorder with the existing method. In this study, we built machine learning models to identify ADy in subjects with anxiety using properties extracted from ECG and respiratory signals. For each dataset, statistical and frequency domain features were estimated from ECG and respiratory signals. Supervised machine learning (ML) algorithms were used to classify the subjects. Out of 23 features estimated, 11 were found to be statistically significant for the classification. We segmented the signals into 5, 10, and 30 minutes intervals to build generalized models. To overcome data imbalance, ensemble techniques like boosting was used. The highest accuracy was obtained in the SVM, Random forest and Gradient Boosting classifiers (cross-validation accuracy of 82.2%, 81.64% and 79.06% and; AUC of 0.81, 0.76 and 0.84) for 10 and 30 minutes segmented datasets. Our results showed that the features extracted from the ECG signal are a good marker for diagnosing ADy in patients with anxiety disorder. Further, a deep neural network-based model can be implemented that may achieve better accuracy for classification provided with the cost of a large number of datasets and computation time.

Author Biographies

Abhilash Saj George, Department of Computer Science and Applications, Amrita Vishwa Vidyapeetham, Amritapuri, India.

Department of Computer Science and Applications, Amrita Vishwa Vidyapeetham, Amritapuri, India.

Arjun Vijayanatha Kurup, Department of Computer Science and Applications, Amrita Vishwa Vidyapeetham, Amritapuri, India.

Department of Computer Science and Applications, Amrita Vishwa Vidyapeetham, Amritapuri, India.

Parthasarathy Balachandran, Department of Neurology, Amrita Institute of Medical Sciences, Kochi, Kerala, India.

Department of Neurology, Amrita Institute of Medical Sciences, Kochi, Kerala, India.

Manjusha Nair, Department of Computer Science and Applications, Amrita Vishwa Vidyapeetham, Amritapuri, India.

Department of Computer Science and Applications, Amrita Vishwa Vidyapeetham, Amritapuri, India.

Siby Gopinath, Department of Neurology, Amrita Institute of Medical Sciences, Kochi, Kerala, India.

Professor, Department of Neurology, Amrita Institute of Medical Sciences, Kochi, Kerala, India.

Anand Kumar, Department of Neurology, Amrita Institute of Medical Sciences, Kochi, Kerala, India.

Professor and HOD ,Department of Neurology, Amrita Institute of Medical Sciences, Kochi, Kerala, India.Professor and HOD 

Harilal Parasuram, Dept of Neurology, Amrita Institute of Medical Sciences, Kochi, India.

Assistant Professor, Department of Neurology, Amrita Institute of Medical Sciences, Kochi, Kerala, India.

Downloads

Published

2021-07-02

How to Cite

George, A. S., Kurup, A. V., Balachandran, P., Nair, M., Gopinath, S., Kumar, A., & Parasuram, H. (2021). Predicting Autonomic Dysfunction in Anxiety Disorder from ECG and Respiratory Signals Using Machine Learning Models. International Journal of Online and Biomedical Engineering (iJOE), 17(07), pp. 143–155. https://doi.org/10.3991/ijoe.v17i07.22581

Issue

Section

Papers