A FPGA Approach in a Motorised Linear Stage Remote Controlled Experiment

Stamen Gadzhanov, Andrew Nafalski, Zorica Nedic

Abstract


In recent years, an advanced motion control software for rapid development has been introduced by National Instruments, accompanied by innovative and improved FPGA-based hardware platforms. Compared to the well-known standard NI DAQ PCI/USB board solutions, this new approach offers robust stability in a deterministic real-time environment combined with the highest possible performance and re-configurability of the FPGA core. The NI Compact RIO (cRIO) Real Time Controller utilises two distinctive interface modes of functionality: Scan and FPGA modes. This paper presents an application of a motion control flexible workbench based on the FPGA module, and analyses the advantages and disadvantages in comparison to another approach - the LabVIEW NI SoftMotion module run in scan interface mode. The workbench replicates real industrial applications and is very useful for experimentation with Brushless DC/ Permanent Magnet Synchronous motors and drives, and feedback devices.

Full Text:

PDF



International Journal of Online and Biomedical Engineering (iJOE) – eISSN: 2626-8493
Creative Commons License
Indexing:
Scopus logo Clarivate Analyatics ESCI logo IET Inspec logo DOAJ logo DBLP logo EBSCO logo Ulrich's logo Google Scholar logo MAS logo