Image Compression Using Neural Networks: A Review
DOI:
https://doi.org/10.3991/ijoe.v17i14.26059Keywords:
Image Compression, Neural Networks, Artificial Neural Network, Data CompressionAbstract
Computer images consist of huge data and thus require more memory space. The compressed image requires less memory space and less transmission time. Imaging and video coding technology in recent years has evolved steadily. However, the image data growth rate is far above the compression ratio growth, Considering image and video acquisition system popularization. It is generally accepted, in particular that further improvement of coding efficiency within the conventional hybrid coding system is increasingly challenged. A new and exciting image compression solution is also offered by the deep convolution neural network (CNN), which in recent years has resumed the neural network and achieved significant success both in artificial intelligent fields and in signal processing. In this paper we include a systematic, detailed and current analysis of image compression techniques based on the neural network. Images are applied to the evolution and growth of compression methods based on the neural networks. In particular, the end-to-end frames based on neural networks are reviewed, revealing fascinating explorations of frameworks/standards for next-generation image coding. The most important studies are highlighted and future trends even envisaged in relation to image coding topics using neural networks.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 haval tariq sadeeq, thamer hassan hameed, abdo sulaiman abdi

This work is licensed under a Creative Commons Attribution 4.0 International License.
The submitting author warrants that the submission is original and that she/he is the author of the submission together with the named co-authors; to the extend the submission incorporates text passages, figures, data or other material from the work of others, the submitting author has obtained any necessary permission.
Articles in this journal are published under the Creative Commons Attribution Licence (CC-BY What does this mean?). This is to get more legal certainty about what readers can do with published articles, and thus a wider dissemination and archiving, which in turn makes publishing with this journal more valuable for you, the authors.
By submitting an article the author grants to this journal the non-exclusive right to publish it. The author retains the copyright and the publishing rights for his article without any restrictions.