Sensor Network Deployment under Distance Uncertainty with Robust Optimization

Junfeng Qiao, Sanyang Liu, Jianke Zhang, Yujun Niu


We consider the sensor deployment problem in the context of distance uncertainty. It is characterized by differentiated arrangement of specific detection probability thresholds at different locations. The problem is formulated as an integer linear programming (ILP) model firstly, aiming at optimizing the number of sensors and their locations. Based on the robust discrete optimization methodology, the uncertain model is transformed into an equivalent ILP problem considering distance uncertainty. The proposed approach can control the tradeoff between optimality and robustness by varying the parameters named protection levels. Uniform and non-uniform event detection probabiliy distributions are considered in the experiment. The results show that, as the distance uncertainty increases, the constraint violation can be avoided in the robust model and the robust solution can provide a significant improvement at the expense of a small loss in optimality when compared to the optimal solution of a deterministic scenario.


sensor network; robust optimization; coverage; uncertainty; differential deployment

Full Text:


International Journal of Online and Biomedical Engineering (iJOE) – eISSN: 2626-8493
Creative Commons License
Scopus logo Clarivate Analyatics ESCI logo IET Inspec logo DOAJ logo DBLP logo EBSCO logo Ulrich's logo Google Scholar logo MAS logo