Application of Two-Level Joint Information Fusion Model in Intelligent Vehicle

Yan Ting Lan, Jiinying Huang, Xiaodong Chen

Abstract


This paper proposes a two-level joint information fusion model combining BP neural network and D-S evidence theory. The model of great practical value reduces target identification error probability by multiple features of the target information, shows good scalability with its two steps of information fusion model, and conveniently increases/reduces feature fusion information source according to different situations and different objects. The method used for intelligent vehicles has good flexibility and robustness in tracking and avoiding obstacle. The simulation and real vehicle tests have verified effectiveness of the method.

Keywords


information fusion, intelligent vehicle, neural network, D-S evidence theory

Full Text:

PDF



International Journal of Online and Biomedical Engineering (iJOE) – eISSN: 2626-8493
Creative Commons License
Indexing:
Scopus logo Clarivate Analyatics ESCI logo IET Inspec logo DOAJ logo DBLP logo EBSCO logo Ulrich's logo Google Scholar logo MAS logo