WSN Spatio-temporal Correlation Data Fusion Method for Dairy Cow

Authors

  • Huaji Zhu National Engineering Research Center for Information Technology in Agriculture; Beijing Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences
  • Yisheng Miao National Engineering Research Center for Information Technology in Agriculture; Beijing Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences
  • Huarui Wu National Engineering Research Center for Information Technology in Agriculture; Beijing Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences

DOI:

https://doi.org/10.3991/ijoe.v13i12.7902

Keywords:

internet of things in dairy farming, wireless sensor network, data fusion, time series prediction, weighted Markov chain

Abstract


The cowshed environment has significant impacts on the yield, diseases and behaviors of dairy cows. Heat stress, in particular, has a great impact on yield. The cowshed environment monitoring system based on wireless sensor network can accurately sense the temperature and other environmental parameters in real time and provide basis for manual environmental intervention and control. Energy constraint is one of the important problems that affect the long-term stable monitoring by the dairy cow wireless sensor network. So, the weighted Markov chain method is used to predict the time series of cowshed temperature. Replacing the actual values with the predicted values at the cluster head can effectively reduce data traffic in the cluster, thereby reducing network power consumption. Test data show that, the average variance of the cowshed environment temperature predicted by the method proposed in this paper is 0.185, and the average power consumption is reduced by about 40% when the compression ratio is 0.3, which effectively prolongs the network lifetime. In addition to that, the cowshed environment prediction can also help make pre-judgments for environmental control, reduce or avoid the heat stress of dairy cows after the environmental parameters exceed the thresholds and provide the basis for the multi-source data fusion for dairy cow.

Author Biographies

Huaji Zhu, National Engineering Research Center for Information Technology in Agriculture; Beijing Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences

Huaji Zhu is an associate research fellow in National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China. His current research interests include Aquaculture informatization, visualization of agricultural spatial data and wireless sensor networks.

Yisheng Miao, National Engineering Research Center for Information Technology in Agriculture; Beijing Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences

Yisheng Miao is an assistant research fellow at National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China. He is mainly engaged in wireless sensor networks and intelligent systems in agriculture.

Huarui Wu, National Engineering Research Center for Information Technology in Agriculture; Beijing Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences

Huarui Wu is a research fellow at National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China. He is mainly focused on artificial intelligence and Internet of things applications in agriculture.

Downloads

Published

2017-12-11

How to Cite

Zhu, H., Miao, Y., & Wu, H. (2017). WSN Spatio-temporal Correlation Data Fusion Method for Dairy Cow. International Journal of Online and Biomedical Engineering (iJOE), 13(12), pp. 26–36. https://doi.org/10.3991/ijoe.v13i12.7902

Issue

Section

Papers