Real-Time Detection and Recognition of Road Traffic Signs using MSER and Random Forests

Xianyan Kuang, Wenbin Fu, Liu Yang


Real-time detection and recognition of road traffic signs plays an important role in advanced driving assistance system. Typically, the region of interest (ROI) method is effective in feature extraction but inefficient because it is sensitive to illumination changes. In this paper, we propose a maximally stable extremal regions (MSER) method with image enhancement to greatly improve ROI. Firstly, we employ gray world algorithm to process original images. And then potential areas of traffic signs are obtained through increasing the image contrast ratio and extracting the image-enhanced MSER. According to the characteristic variable and the geometry moment invariants, the geometric characteristics of traffic signs are extracted to obtain the ROIs. Finally, HSV-HOG-LBP feature is constructed and the random forests algorithm is used to identify the traffic signs. The experimental results show that our proposed method show strong robustness on illumination condition and rotation scale, and achieves a good performance by experiments with actual images and German traffic sign detection benchmark (GTSDB) data set.


traffic sign detection and recognition, maximally stable extremal regions (MSER), random forests, geometry moment invariants, image enhancement

Full Text:


International Journal of Online and Biomedical Engineering (iJOE) – eISSN: 2626-8493
Creative Commons License
Scopus logo Clarivate Analyatics ESCI logo IET Inspec logo DOAJ logo DBLP logo EBSCO logo Ulrich's logo Google Scholar logo MAS logo