The Design of Robotic Arm Adaptive Fuzzy Controller Based on Oscillator and Differentiator

Wan Min, Tian Qinglan, Sun Chuanhong, Yi Xiuyuan

Abstract


State variables are acquired when tracking the trace of the robotic arm with adaptive fuzzy controller. Since some variables are difficult to or cannot be measured directly, we introduced the second order oscillator and the second order differentiator that converges in finite time to obtain the value of each state variable. In this paper, a model based on the dynamics analysis of robotic arm was build to design the second order oscillator and the second order differentiator that converges in finite time to obtain the value of each state variable. The designed adaptive fuzzy controller for robotic arm achieved high accuracy in trace tracking. Simulation results of two-link robotic arm show the adaptive fuzzy controller for robotic arm based on differentiators is adaptable, flexible. This controller is simple to design, easy to implement, and has a good value for the application of robotic arm system.


Keywords


Robotic arm;Adaptive Fuzzy Controller; Second Order Oscillator;Second Order differentiator that converges in finite time

Full Text:

PDF



International Journal of Online Engineering (iJOE) – eISSN: 1861-2121
Creative Commons License
Indexing:
Scopus logo Clarivate Analyatics ESCI logo IET Inspec logo DOAJ logo DBLP logo EBSCO logo Ulrich's logo Google Scholar logo MAS logo