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PAPER

ResFCNET: A Skin Lesion Segmentation Method Based 
on a Deep Residual Fully Convolutional Neural Network

ABSTRACT
Melanoma, a high-level variant of skin cancer, is very difficult to distinguish from other skin 
cancer types in patients. The presence of a large variety of sizes of lesions, fuzzy boundar-
ies, their irregular-shaped nature, and low contrast between skin lesions and surrounding 
flesh areas make it clinically difficult to detect and treat melanoma. In this paper, we propose 
Residual Full Convolutional Network (ResFCNET), a skin lesion recognition model that com-
bines residual learning and a full convolutional network to perform semantic segmentation 
of skin lesion. Based on secondary-feature extraction and classification, an experiment was 
done to verify the effectiveness of our model using the ISBI 2016 and ISBI 2017 dataset. Results 
showed that a residual convolution neural network obtained high-precision classification. 
This technique is novel and provides a compelling insight for medical image segmentation.
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1	 INTRODUCTION

Melanoma is rare but the deadliest among all skin cancer types [1]. This type of 
cancer of the skin is caused by the exposure of the human skin to excessive sun rays. 
According to available data, the United States, New Zealand, and Australia have the 
world’s highest rates of skin cancer, accounting for 75% of all skin cancer-related 
deaths [2], [3]. If detected and treated at the early stages, the chances of patients being 
cured are high. Conversely, melanoma has the tendency to spread to neighboring 
parts of the affected region of the body; then, treatment becomes a near impossibil-
ity and this results in death. Therefore, segmenting, or delineating the boundary of, 
melanoma lesions is vital intervention in reducing the rate of spread and promoting 
a timely cure. [4].
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Malignant melanoma has been on the rise in various parts of the world in recent 
times [5], with a high mortality rate, with nearly 76,380 cases recorded annually 
and 10,130 deaths reported in the United States alone. The increasing rise in cli-
mate change in recent years is expected to result in a further increase in instances 
in many parts of the world [6]. Even though there are modern treatment methods 
such as radiation therapy, chemotherapy, and surgery in practice [7], classifying and 
diagnosing melanoma skin cancer remains the main challenge [6], [8]. Early identi-
fication is critical to the patient’s survival, which is five years and with only a 15% 
survival probability in most melanoma cases that have progressed, whereas patients 
with melanoma diagnosed in its early stages have a 75% survival rate. This variation 
in percentages demonstrates that identifying melanoma at the early stages is vital 
in timely diagnosis and early treatment. In most cases, skin disease specialists have 
employed pathology for the confirmation of skin lesions [9]. This method can some-
times be time consuming and delay the process of detecting the disease. In other 
cases, dermatologists rely on expert consensus for the confirmation of skin lesions. 
Again, this approach can be inaccurate and susceptible to errors, even in the hands 
of an experienced dermatologist.

In recent times, machine learning methods have provided viable alternatives 
that have improved the detection of benign and malignant skin lesions [10]. New 
extraction methods feature using Support Vector Machine Random Forest, K-Nearest 
Neighbor, and Naïve Bayes classifiers to classify skin cancer as melanoma or benign 
lesions [11]. For image segmentation, this model achieved a Dice ecoefficiency of 
77.5% and an SVM classifier accuracy of 85.19%.

Akram, Khan, Sharif, & Yasmin focused on improving segmentation and feature 
selection of thermoscopic images using a multilevel support vector machine [12].  
A new feature extraction and dimensionality reduction criterion was designed that 
incorporates both traditional and new feature extraction strategies. The suggested 
method is assessed using many criteria such as FPR, sensitivity, specificity, FNR, and 
accuracy using the PH2, ISBI 2016, and ISIC benchmark data sets. The statistics show 
that the proposed strategy outperforms a number of existing strategies by a signifi-
cant margin.

Machine learning models adopt manual feature selection and feature extraction 
with traditional tree-based algorithms such as decision trees, support vector 
machine (SVM), and cluster-based algorithms such as K-Nearest Neighbor to realize 
the classification and segmentation of skin cancers. This manual feature engineer-
ing approach can come in handy if the data is not too huge. However, with increas-
ing amounts of data, machine learning approaches can become ineffective. Again, 
training of machine learning algorithms for automated classification of skin lesions 
is hampered by the small size of images and the difficulty in understanding images 
with different features. The recent success of deep learning for object detection and 
classification problems has generated insight in applying the methods to semantic 
segmentation. Deep learning approaches employ end-to-end training procedure, 
which automatically extract features without relying on a manual features engi-
neering process.

The researchers in Long [13], deployed a fully convolutional network to perform 
pixel-wise segmentation. The authors adapted Google Net classification technique 
for their classification task as the convolutional layers were replaced with a fully 
connected layer. As an extension of the work of Long [13], Hong et al. [14] proposed 
a deconvolutional network, which decoupled the classification task through the 
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adoption of bridging layers to design new feature maps that could reduce training 
time. In spite of the successes achieved [13], [14], the fully convolutional models used 
pooling layers that sought to reduce the dimensionality of the image data. This leads 
to loss of vital information. However, there is the need to preserve exact information 
of class maps to achieve semantic segmentation.

Kolekar & Magdum proposed pixel-wise semantic segmentation of skin lesions 
using a convolutional encoder-decoder neural network [15]. The authors trained 
and tested their model on the same dataset used in this paper. Experimental results 
of their approach achieved a Jaccard index value of 92.8%. Even though the encoder- 
decoder networks work efficiently in keeping the output image resolution, the net-
work becomes deeper and slow to train.

Kaur et al. [16] proposed an end-to-end atrous spatial pyramid pooling–based con-
volutional neural network for automatic lesion segmentation. Based on the concept 
of atrous dilated convolutions, the authors constructed a model and tested it on the 
ISBS 2016, 2017, and 2018 datasets. Their model achieved a Jaccard index of 86.5% 
on ISBS 2016, 81.2% on ISBS 2017, and 81.2% on ISBS 2018 datasets, respectively.

This study aims to further the development of effective models for automated 
diagnosis of melanoma, which is among the deadliest types of skin cancer along 
with squamous and nevus, according to [17]. Therefore, we introduce an enhanced 
fully convolutional network (FCN)–based deep network for skin lesion segmenta-
tion (ResFCNET). The design is composed of an encoder and a decoder. The encoder 
transforms an image into a representation. Semantic segmentation is then performed 
by the decoder, which recovers the representation. The encoding portion comprises 
five residual units with 3×3 convolutional blocks combined with an identity map. 
The residual blocks assist the network to learn features from previous levels, and 
high-semantic features from deeper layers. Each convolutional block is composed 
of a 3×3 convolutional layer with each normalization and Relu activation function.

First, we applied a stride of 2 to reduce sample size of the image instead of using 
a pooling operation. The images were reduced in size by half, and the identity map 
connected the unit’s input and output. The operation was repeated five times for 
each residual unit. The decoder path has four residual blocks with each layer start-
ing up with up sampling layer. This allowed the network to learn at a lower level 
and combine the feature maps from the encoding path with the feature map from 
the associated encoding path. The last part has convolutional and sigmoid activa-
tion where the network can project the multichannel functionality into the desired 
segmentation. Finally, the proposed model was used for secondary feature extraction, 
and a classification experiment was conducted. Accuracy, Dice loss sensitivity, and 
other evaluation metrics were used to evaluate the performance of our model.

2	 LITERATURE REVIEW

Deep neural network creation and widespread use have generated a lot of curios-
ity, opened up a wide range of possibilities for clinical research, and stimulated more 
studies on risk assessment and disease detection through deep learning. Most of the 
existing approaches can be classified into supervised fully automatic, semi-automatic, 
and unsupervised fully automatic. The supervised approach basically extracts 
region or pixel features like the pixel-level Gaussian features [18], [19] and tex-
ture features [20], [21]. It uses several classifiers such us a wavelet network [20],  
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Bayes classifiers, or support vector machines [21] to differentiate healthy skin from 
a lesion. The semi-automatic method requires the initialization of the segmenta-
tion process by the user or initialization such as the seed-selection method [22] or 
through contour placement [23]. Then these contours and seed will gradually grow 
or transform to form skin lesion boundaries based on a function that has has been 
predefined. But this approach has some drawbacks because manual initialization is 
often time inefficient or it requires a longer time for this process and is subjective 
and not reproducible. As such, this method is unreliable in the clinical medical envi-
ronment and is not widely used. The unsupervised fully automatic method mostly 
depends on thresholding [22], [24], [25], statistical regions merging, and energy func-
tions. Thresholding approaches try to differentiate the skin lesion based on a thresh-
old value, which is usually derived by analyzing image features that have been 
predefined. These approaches, which rely on energy functions, attempt to identify 
skin lesion boundaries through minimization of a predefined cost function on the 
features of images, such as smoothness, statistical distributions, and edges. The sec-
ond method, statistical region merging, works by iteratively merging regions of pix-
els in an orderly fashion. Lately, some approaches such as multiscale pixel or region 
with cellular automata (MSCA) [26], [27] spare coding with dynamic rule-based 
refinement (SCDRR) [28] have been used to divide cutaneous lesions. Unsupervised 
approaches, on the other hand, have the drawback of being unable to appropriately 
segment difficult skin lesions, such as those with artifacts close by or those that touch 
the image’s multiple boundaries. The thresholding also has some drawbacks; which 
includes distribution intensity in the skin lesion, which may fail if the distribution 
has several peaks or highs. All these methods rely on a feature that is low level, such 
as texture and color features, which cannot accurately capture the variations of a 
wide image. The unsupervised fully automatic method mostly depends on thresh-
old [22], [24], [25], statistical regions merging, and energy functions. Thresholding 
approaches try to differentiate the skin lesion based on a threshold value, which is 
usually derived by analyzing image features that are predefined. These approaches 
rely on energy functions to try to identify skin lesion boundaries through minimi-
zation of a pre\defined cost function on the features of images such us smoothness,  
statistical distributions, and edges. The statistical regions merging method is 
based on recursively merging region of pixels in an orderly manner. Lately, some 
approaches such as multiscale pixel or region with cellular automata [26], [27] spare 
coding with dynamic rule-based refinement (SCDRR) [28] and have been applied 
to skin lesion segmentation. But unsupervised methods have some disadvantages. 
For example, they cannot correctly segment some challenging skin lesions, such as 
a lesion that has artifacts close to it or a lesion that touches the various edges of 
the image. Thresholding also has some drawbacks, including distribution intensity 
in the skin lesion, which may fail if the distribution has several peaks or highs. All 
of the solutions presented rely on low-level properties, such as texture and color, 
which are incapable of effectively capturing wide-image fluctuations.

Furthermore, these approaches’ performances rely mostly on the tuning of large 
parameters and efficient preprocessing approaches, such as hair removal and cor-
rection of illumination. This makes it difficult to apply the method to new images. 
However, with the rise in artificial intelligence methods, such as machine learning 
and deep learning, significant headway has been achieved. Convolutional networks 
are becoming the de facto technique for addressing applied computer vision prob-
lems. This section provides an overview of some deep learning methods [13], [29]. 
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Convolutional neural networks (CNNs) have recently achieved notable results in 
medical image problems, such as body part recognition from computed tomography 
(CT) images [30], mitosis detection on histology images Cirşan [31], cerebral microbe-
ads detection on magnetic resonance (MR) images [32], 2D/3D image registration [33], 
and skin cancer classification [34]. CNN has been used to analyze MR images of a 
brain tumor [35], and CT urography to analyze images of a urinary bladder [30] and 
nondermoscopic images of a skin lesion, among others. Researchers have devel-
oped fully convolutional networks (FCNs) based on this success of [36], [37]. These 
networks perform a backward stride of the convolution process, normally called 
deconvolution. These generate maps of the segmented images. Two selected exam-
ples are U-net and deconvolution layers.

The availability of enormous datasets, improved algorithms, and process-
ing power have all contributed to the recent explosion in deep learning. This has 
enabled researchers and practitioners to use deep learning approaches on a variety 
of medical problems. Object identification, segmentation, and image classification 
are just a few of the tasks that convolutional neural networks have excelled in [34], 
[35]. This excellent result can be attributed to the fact that CNNs are capable of learn-
ing image feature representations that carry semantic meaning at a high level [38]. 
LeCun, Bengio, & Hinton recently used a 50-layer-deep residual network to perform 
segmentation [39]. Yu et al. [40] reported a residual network that was utilized to 
expand the network’s depth. CNN has also shown promising results in the area of 
medical imaging. Such tasks include mitosis detection on historical images [31] skin 
cancer classification [34], skin lesion extraction from nondermoscopic images [41], 
and 2D/3D image registration, urinary bladder segmentation in CT urography [30], 
among others.

3	 METHODOLOGY

3.1	 Dataset

The dataset used for this study is the ISBI data called Melanoma detection data-
set, available at https://www.kaggle.com/wanderdust/melanoma-detection. This is 
benchmark data provided by International Skin Imaging Collaboration (ISIC) for 
research on skin cancer and has been used in previous studies such as [16], [42], 
[43], [44]. Specifically, this study made use of ISBI 2016, and ISBI 2017 thermoscopic 
image datasets.

Table 1. Dataset distribution for our study

Year Data Source Number of Trainings Set Number of Tests Set SizeImage

2017 ISBI 2000 600 771×750−6748×4499

2016 ISBI 900 379 1022×787−4288×2848

To accomplish skin lesion segmentation, we proposed a fully convolutional 
network (FCN), shown in Figure 1. Our model design is made up of two parts:  
an encoder and a decoder. The encoder transforms an image into a representa-
tion. The semantic segmentation is then performed by the decoder portion, which 
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recovers the representation. The encoding part consists of five residual unit with a 
3×3 convolutional block and an identity map. These residual He blocks aid the net-
work in learning features from previous levels as well as high-semantic features from 
deeper layers [45]. The general shape of the residual block is shown in Equation 1. 
Each convolutional block is made up of a 3×3 convolutional layer, batch normaliza-
tion, and the ReLU activation function. Here we applied a stride of 2 instead of using 
pooling operations to downsample the images. The images are reduced in size by 
half, and the identity map connects the unit’s input and output. For each residual 
unit, the operation is repeated five times.

	 y h x F xW X f y
l l l l l l
� � �

�
( ) ( ) ( )

1
	 (1)

F(.) is the residual function, f (yl) is activation function, and h(xl) is an identity- 
mapping function. A typical one is h(xl) = xl, where xl + 1 denotes the input and out-
put of the ith block.

Fig. 1. The difference between a plain convolutional and residual network

The decoder path has four residual blocks, with each layer starting with an 
upsampling layer. This allows the network to learn at a lower level and concatenate 
the feature maps from the encoding path with the feature maps from the associated 
encoding path. The last part of the network has a 1×1 convolutional and sigmoid 
activation function where the network can then project the multichannel function-
ality into the required segmentation. The network comprises a total of 20 convolu-
tional layers. Figure 2 shows the outcome of our proposed design in detail and also 
depicts our suggested architecture.
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Fig. 2. The encoder and decoder of ResFCNET

The encoder and decoder of ResFCNET are each made up of five blocks. The red 
arrows indicate network connectivity, the green arrows indicate the identification 
block, and the blue arrows indicate skip connections.

https://online-journals.org/index.php/iTDAF


iTDAF | Vol. 1 No. 1 (2023)	 IETI Transactions on Data Analysis and Forecasting (iTDAF)	 11

ResFCNET: A Skin Lesion Segmentation Method Based on a Deep Residual Fully Convolutional Neural Network

3.2	 Experiments and performance metrics

Experimental environment. The simulation experiments were performed on a 
physical machine running on 1.4 GHz Quad-Core Intel Core i5, with 8 GB 2133 MHz 
LPDDR3 memory and macOS Monterey version 12.3 64-bit operating system.

Our model was built with Keras [46] and TensorFlow [47], and trained with a 
resized image of 192×256 RGB images. The image was normalized to obtain the pixel 
value between 0 and 1. We flipped the image vertically with a probability of 0.5 and 
again flipped it at another probability of 0.5. The next step was to apply a rotation 
at an angle of theta, which was randomly sampled by using a Gaussian distribution 
with the range of [−400, 400]. The weights of the network were initialized using 
Xavier initialization [48] and trained using a stochastic gradient descent [49] while 
minimizing Equation 2, with an Adam optimizer [50], learning rate of 10–4. The net-
work was trained on Tesla K40 GPU with 12 GB GDDR5.

Evaluation metrics. Accuracy (AC), Dice loss (DI), sensitivity (SE), specificity (SP), 
and Jaccard coefficient (JC) were adopted in this study to evaluate the performance 
of our proposed model, defined as follows:

	 AC
TP TN

TP FP FN
�

�
� �
( )

( )
	 (2)

	 DI
TP TN

TP FP FN
�

�
� � �
( )

( )2

	 (3)

	 SE
TP

TP FN
�

�
( )

( )
	 (4)

	 SP
TN

TN FP
�

�
( )

( )

	 (5)

	 JC
TP

TP FP FN
�

� �
( )

( )

	 (6)

where TP, TN, FP, and FN denote the number of true positives, true negatives, 
false positives, and false negatives, respectively.

Experiments on ISBI 2016 and ISBI 2017 skin lesion datasets. The 2016 data-
sets contained 1279 RGB images. The image was divided into 900 training anno-
tated dermoscopic images with 727 benign images and 173 melanomas. It also had 
a 379-validation set with 75 melanomas and 304 benign. This was 8-bit RGB images 
with sizes ranging from 542×718 to 2848×4288. The 2017 dataset had 2000 training 
with a test sample of 600. The sizes of the images ranged from 771×750 to 6748×4499.

4	 RESULTS AND ANALYSIS

Using three distinct image sizes, we compared the segmentation performance: 
96×128, 192×256, and 384×512. The Dice coefficient improved from 0.937 to 0.938 
when the image size was increased from 96×128 to 192256, but it dropped to 0.873 
when the image size was increased to 384×512, as shown in Table 2. The quadru-
pled quantity of pixels made model training more difficult, which resulted in a 
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performance drop. Although expanding model capacity by adding more layers or 
features may increase performance for 384×512 images, it would be extremely time 
consuming. At the moment, 384×512 epoch training takes 110 seconds, 192×256 
takes 27 seconds, and 96×128 takes 8 seconds. These findings suggest that a 192×256 
image size provides a fair mix of segmentation performance and computing cost; 
thus, we downsized all of the images to this resolution before putting them into the 
ResFCNET model. The results with different size of images are shown in Table 2. Our 
model increased segmentation performance in terms of Dice similarity and Jaccard 
coefficient.

Table 2. Results of different input size

Input Size AC DC JC SE SP

98×128 0.974 0.937 0.856 0.920 0.994

192×256 0.970 0.938 0.865 0.9189 0.989

284×512 0.941 0.873 0.861 0.920 0.972

4.1	 Behavior of training epochs, accuracy, and loss function

A loss function measures the performance of a classification model whose output 
is a probability value between 0 and 1 and is known as cross-entropy loss. This pixel- 
wise classification may favor the background image above the lesions, resulting in 
the lesion not being effectively segmented or missing. A solution to this problem 
would be to give each pixel a weight during the training process that will com-
pensate the gaps in frequencies of pixels from each class. So to help re-balance the 
contribution of both the background and the lesion areas, various methods have 
been proposed. Although these devised loss approaches help in balancing the class 
[43], they come with additional computational cost during the training process. The 
Jaccard index [43] shown in Equation 2 was adopted:

	 L
t p

t p t pJ

ij ijij

ijij ij ij ijijij

�
� �

�
� ��

( )

2 2
	 (7)

The size of the intersection divided by the size of the union of the sample sets is 
a formal definition of the measurement, which stresses similarity between finite 
sample sets. It takes into consideration both missed values and false alarms in all the 
classes. This helps in addressing medical images with high-class imbalance. Figure 3 
shows training loss and validation loss output achieved during the training (epochs). 
The graph shows that the validation loss fluctuates at different complete passes of 
our training set through the algorithm. The epoch is an important parameter for the 
algorithm to train our model, as the accuracy and validation loss values are obtained 
at the end of every epoch. We aim at obtaining the model that has the lowest valida-
tion loss. However, we can have thousands of epochs running, but we set a stopping 
point when we have a minimal model error. This is taken as the best model to fit our 
dataset well. Figure 4 indicates the accuracy characteristics obtained during differ-
ent epochs.
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Fig. 3. Training loss and validation loss obtained at different epochs

Fig. 4. Accuracies obtained for training and validation at different epochs

Table 3. Results of different loss functions

Loss Function AC DC JC SE SP

Jaccard index 0.971 0.942 0.866 0.925 0.989

Cross entropy 0.970 0.938 0.865 0.9189 0.959

Because of the class imbalances, cross-entropy loss is not suited for skin lesion 
segmentation, because it is skewed towards the background. Thus we utilize the 
Jaccard distance as the loss function, which is more suitable for class imbalances. 
The results of the loss functions are shown in Table 3, with the Jaccard index provid-
ing the best results.
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Fig. 5. Sample of segmented images obtained by our proposed model

Figure 5 shows a sample of the segmented outcome produced by the ResFCNET 
model. The images (a) and (b) represent the input images. Images (c) and (d) are the 
corresponding outputs.

Table 4. Comparison with other works

Input Size Accuracy Dice Jaccard Sensitivity Specificity

Kolekar et al. [15] 0.928 0.845 0.928 0.889 0.948

Yu et al. [40] 0.949 0.897 0.829 0.911 0.957

Mahmudur et al. [51] 0.952 0.895 0.822 0.880 0.969

Our study 0.971 0.942 0.866 0.925 0.989

4.2	 Comparison with other deep learning algorithms

Tables 4 and 5 presents a comparison of our model with other deep learning 
models fitted on the same dataset with the same number of epochs after running 65 
epochs with each model, showing Accuracy, Dice, Jaccard, Sensitivity and Specificity. 
When we look at Accuracy, for instance, 97.1% is higher than any other machine 
learning algorithm. It means deep learning gives the best ability to recognize skin 
lesion on the body as well as to provide the best overall performance. This result 
shows that our model was successful at segmenting skin lesion.
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Table 5. Comparison with similar models

Model Accuracy Dice Jaccard Sensitivity Specificity
CNN 0.953 0.910 0.843 0.910 0.965

Inception V3 0.949 0.897 0.829 0.911 0.957

VGG16 0.952 0.895 0.822 0.880 0.969

ResFCNET 0.971 0.942 0.866 0.925 0.989

5	 DISCUSSION

This study was aimed at supporting the efficient analysis of dermoscopic data to 
aid the automatic diagnosis and detection of melanoma, deemed to be the deadliest 
form of skin cancer. After running 150 epochs on the ResFCNET model, as well as 
established models such as CNN, Inception V3, and VGG16, Accuracy, Dice, Jaccard, 
sensitivity, and specificity were recoded. Our accuracy of 97.1% is higher than any 
of the compared state-of-the-art models. Again, the Jaccard similarity index of 86.6% 
obtained by our model is very high compared with the existing models. The model 
was evaluated on multiple evaluation metrics, as shown in Tables 4 and 5, allayed 
any doubt about the performance of our model. This performance means that the 
ResFCNET deep neural network model gives the best ability to recognize skin lesion 
on the body as well as providing the best overall performance.

Additionally, the introduction of residual network, a recent variation of convolu-
tional neural network for reading dermoscopic images and perform visual detection 
and recognition in this study, is a novelty in the research. This approach provided a 
great result and can provide a pathway for skin specialists to apply deep learning to 
augment their human expertise in the field.

6	 CONCLUSIONS

Skin lesions from dermascopy data should be effectively segregated in order to 
achieve accurate skin cancer diagnosis. In this paper, a deep learning method based 
on a residual and full convolutional neural network named ResFCNET was proposed 
to perform semantic segmentation of skin lesions. In all, our model achieves an aver-
age Jaccard index of 85.5% on the ISBI 2016 skin lesion dataset and 86.6% on ISBI 
2017 skin lesion dataset, respectively. The introduction of feature reuse in ResFCNET 
brings up new insights to further research in skin lesion recognition and forms 
the basis for future work. Future studies might want to explore larger amounts of 
datasets to reduce the likelihood of overfitting and increase performance of models. 
The successful comparative experimentation with other existing deep learning algo-
rithms proves that our model is feasible. It also proves that the performance of deep 
learning methods in skin lesion recognition is better compared to machine learning–
based approaches recently reported in the works of Noel et al. [52].
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