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PAPER

Knowledge Inference Combining Convolutional Feature 
Extraction and Path Semantics Integration

ABSTRACT
Many knowledge representation models extract local patterns or semantic features using 
fact embeddings but often overlook path semantics. There is room for improvement in path-
based approaches that rely solely on single paths. A customized convolutional neural network 
(CNN) architecture is proposed to encode multiple paths generated by random walks into 
vector sequences. For each path, the feature sequence is then merged into a single vector 
using bidirectional long short-term memory (LSTM) by concatenating both forward and back-
ward hidden states. Semantic relevance between different paths and candidate relations is 
computed using the attention mechanism. The state vectors of the relations are calculated 
using weighted paths. These paths help determine the probabilities of the candidate relations, 
which are then used to assess the validity of the triples. Link prediction experiments on two 
benchmark datasets, NELL995 and FB15k-237, demonstrate the advantages of our solution. 
Our model shows a 7.19% improvement at Hits@3 on FB15k-237 compared to Att-Model + 
Type, another advanced model. The model is further applied to a large complex dataset, FC17, 
as well as a sparse dataset, NELL-One, for few-shot reasoning.
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MRR Mean Reciprocal Rank
NLP Natural Language Processing
PRA Path Ranking Algorithm
RL Reinforcement Learning
RNN Recurrent Neural Network
2D Two-Dimensional

1	 INTRODUCTION

Knowledge base (KB) [1] organizes facts in the form of triples, which consist of 
entities and relations. Mainstream KBs such as NELL [2], YAGO [3], and Freebase [4] 
are extensively utilized in various fields such as information retrieval [5], question 
answering [6–7], personalized recommendation [8], and more.

Existing KBs are incomplete, i.e., there are entities or relations missing in lots of 
fact triples [9], which impairs the performance of downstream tasks. Knowledge 
graph completion (KGC) [10–11] aims to solve this problem by extracting local pat-
terns or semantic features using knowledge embedding to generate new facts based 
on known information [12–13]. The core concepts, key issues, common techniques, 
and future directions are discussed, analyzed, and summarized in references 
[14–16]. Translation or rotation-based distance and tensor or matrix factoriza-
tion-based semantic similarity gain prevalence among mainstream approaches [17], 
with TransE [18] and DistMult [19] as representatives, respectively. ConvE [20] uti-
lizes convolutional neural networks (CNNs) to facilitate interactions between entities 
or relations and enhance feature extraction.

However, most approaches ignore the semantic information conveyed by rela-
tional paths between entity pairs, which could aid in determine the validity of tri-
ples [21–22]. Neelakantan et al. [23] and Das et al. [24] introduced recurrent neural 
network (RNN) for path embedding. Since ordinary RNNs may not learn semantic 
dependencies across long distances, Hochreiter et al. [25] proposed long short-term 
memory (LSTM), which computes information that should be forgotten or updated 
using a gated structure. The attention mechanism [26] is widely applied in computer 
vision (CV) and natural language processing (NLP) tasks [27–29]. On the basis of 
TransE, Xiong et al. [30] employed the reinforcement learning (RL) framework to 
encode agents into continuous spaces. This approach combines the advantages of 
distance models and path models, i.e., taking into account both local structure and 
semantic correlations.

This paper proposes an integrated framework named CLAP (knowledge inference 
with CNN, LSTM, and attention mechanism) for improved local feature extraction 
and path semantics recognition. Paths are integrated with different weights using 
the attention mechanism.

The main work includes: (1) Designing a customized CNN framework to encode 
full paths into vector sequences; (2) Employing bidirectional LSTM (BLSTM) to 
merge each path into a single vector; (3) Introducing the attention mechanism to 
assign different weights based on the correlations between the candidate relations 
and paths, integrating which is used to calculate the probabilities of the candi-
dates; (4) Conducting experiments to compare CLAP on benchmark datasets with 
baselines.

https://online-journals.org/index.php/iTDAF
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2	 RELATED	WORK

In KGC, embedding models aim to learn low-dimensional representations of enti-
ties and relations while preserving the original structural patterns and semantic 
constraints. SE [31] computes the dot products of relational matrices with head or 
tail entities, which is computationally expensive. Subsequent models strive to strike 
a balance between complexity and performance.

TransE maps relations as translational vectors and posits that if one triple holds, 
the head vector after translation should be close to the tail vector, i.e., vh + vr ≈ vt, 
where vh, vr, vt are the embeddings of entities and relations. Local features of triples 
are preserved in the same dimension of entity or relation vectors. TransH [32] pro-
poses relation-specific hyperplanes, wr while TransR [33] further replaces them wr 
with mapping matrices Wr. Both approaches aim to reflect the role differences of 
entities under various relations; however, they come with higher complexities.

Among the similarity models, RESCAL calculates triple scores by factorizing of 
third-order adjacency tensors. DistMult represents relations as diagonal matrices 
to simplify computations. ComplEx [34] further introduces the complex space for 
knowledge embedding.

In recent years, CNN has been introduced into NLP [35] with fewer parameters 
and lower computational overhead than fully connected networks. In ConvE, enti-
ties and relations vh, vr are concatenated, reshaped, and then input into a convo-
lutional layer. Feature tensors are vectorized by filters and computed vt for triple 
scores. The two-dimensional (2D) convolution could enhance interactions between 
entities and relations [36].

Most models above only consider direct correlations and ignore the semantics 
passed down relational paths [37–38]. Lao et al. [21–22] used the depth first random 
walk algorithm to generate paths. Das et al. [39] propose Minerva, which considers 
historical paths in knowledge graph (KG) traversal. Luo et al. [40] combined rela-
tional paths with TransE. However, such studies consider paths as atomic features, 
resulting in large feature matrices and high computational costs [41–42].

Recurrent neural networks (RNNs) were was originally designed to process 
sequential data and have achieved success in fields such as speech and video rec-
ognition. Neelakantan et al. [23] proposed path-RNN, which decomposes paths into 
relational sequences and inputs them into an RNN. Paths with the highest scores 
are selected to complete missing triples. Parameter sharing within the same layer 
reduces computations. However, there may be multiple paths associated with can-
didate relations simultaneously, and a single path may not provide sufficient infor-
mation. Das et al. [24] integrated multi-path semantics with Mean or LogSumExp 
operations, which ignore the differences in semantic correlations.

Ordinary RNNs are plagued by the gradient vanishing problem and have diffi-
culty learning long-distance semantic dependencies. LSTM introduces a gated struc-
ture to control information flow, and there are numerous variants [43–44].

Zhang et al. [45] argue that integrating path information is essential for knowledge 
representation and reasoning, particularly in complex scenarios. Xiong et al. [46] 
argue that the continuous growth and sparsity of knowledge bases (KBs) necessi-
tate few-shot, one-shot, and even zero-shot reasoning capabilities, where auxiliary 
information such as path semantics is beneficial. Related studies include references 
[47] and [48].

Recently, the attention mechanism has been widely applied to NLP tasks [49]. 
Bahdanau et al. [50] and Vaswani et al. [51] designed machine translation decoders 
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with such mechanisms. Jiang et al. [28] proposed an attentive knowledge reasoning 
solution that assigns different weights to paths based on their semantic relevance. 
Nathani et al. [52] employed the mechanism to extract neighbor information in 
graphs for relational clustering. The attention mechanism is not adept at processing 
long sequences either. Zhou et al. [27] proposed an integrated model, Att-BLSTM, in 
which BLSTM [53] is used to generate sentence embeddings with word embeddings. 
Scores are then computed using the attention mechanism for relational classification.

Since CNN-based approaches and path-based methods have different strengths, 
this paper proposes CLAP as an integrated solution for improved embedding feature 
extraction and semantic utilization.

3	 FRAMEWORK	OF	CLAP

The framework of CLAP is shown in Figure 1. The code is publicly available at 
https://github.com/ch9t/CLAP. For a given entity pair and candidate relations, a cus-
tomized CNN is used to encode multiple paths obtained by random walks between 
the entities, considering their relational composition. Paths with variable lengths 
are mapped to vector sequences with the same lengths while retaining local struc-
tures. For each path, the feature sequence is then merged into a single vector using 
BLSTM, concatenating both forward and backward hidden states. The path vectors 
are equivalent to the sentence embeddings [27]. Semantic relevance between dif-
ferent paths and candidate relations is computed using the attention mechanism. 
The state vectors of the relations are calculated using weighted paths. These paths 
help determine the probabilities of the relations, which are then used to assess the 
validity of the triples.

Fig. 1. Framework of CLAP

3.1	 Vector	embedding	of	relational	paths	with	CNN

Each KG contains an entity set E and a relation set R. In one triple, subject (h, r, t), 
h ∈E represents the head entity, object t ∈E represents the tail entity, and predicate 
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r ∈R represents the relation. The embedding of the triple is denoted as (es, r, et), 
reflecting the orderly link between entities. There may be multiple paths between 
one entity pair, so treating the paths as atomic features leads to a rapid growth of 
the feature matrix as the data increases, which is infeasible. ConvE uses CNN to 
extract factual features while significantly reducing the number of parameters. 
In this paper, a customized CNN architecture is proposed to embed the paths into 
low-dimensional representations. Firstly, the path ranking algorithm (PRA) is applied 
to obtain highly probable paths with the head and tail entities es, et as the start and 
the end, respectively. With random Walk, PRA starts from the head entity es, searches 
paths within lengths in a specified scope throughout the entire graph, and records the 
relational sequence along with intermediate entities in each path. Record the proba-
bilities of different paths reaching the tail entity et, and filter them according to a preset 
threshold. A complete path π can be denoted as {es, r1, e1, r2, e2, …, ei-1, ri, ei, …, rt, et} ∈ Π, 
in which the relational sequence is {r1, r2, …, rt}, (ei-1, ri, ei) represents the i-th triple in 
the path, and Π represents the filtered collection of paths. The numbers of relations in 
different paths vary. Take the longest path; the number of relations is expressed as t. 
Set all paths to the same length t, and fill in blanks with zeros.

Vector representations of entity types [24] are utilized to reduce the number of 
parameters and address the issue of certain entities in the Test Set not being present 
in the Train Set. The entity pairs and relations are transformed into k-dimensional 
vectors using the embedding matrix, i.e., es, et, r ∈ℝk and then input into the path 
convolution layer. The size and stride of the filter ω have a significant impact on 
feature extraction and calculation cost. To avoid extracting meaningless features, we 
use a unified size ω ∈ℝk×3 and stride of 2. Multiple kernels are employed to traverse 
paths, Ω and τ representing the collection and the number of kernels respectively, 
i.e., τ = Ω. Take all triples on each path as units or windows and extract their local 
patterns one by one. Concatenate all the features; the th feature vector of one path 
could be denoted as ci = [ci1, ci2, …, ciτ], ci ∈ℝτ, ciτ = f(ωτ[ei-1, ri, ei] + b) where f represents 
the nonlinear activation function ReLU [23–24], and b is the bias. After convolution, 
the vector sequence for each path is represented as {c1, c2, …, ct} an input into BLSTM.

3.2	 Path	feature	merging	with	bidirectional	LSTM

It is difficult for ordinary RNNs to learn long-distance semantic dependencies. 
Zhou et al. [27] employed BLSTM networks, which check the current states of nodes 
or cells using peephole connections to enhance bidirectional correlations between 
the constant error carousel (CEC) and each gate. The bidirectional gated recurrent 
unit (GRU) adopted by Lu R et al. [54] simplifies the cell structure and reduces the 
parameter number with a similar coupling gated structure [55]. We use BLSTM to 
merge the vector sequences into single vectors.

Each τ-dimensional output vector ci from the convolution layer is consid-
ered a time step in BLSTM. BLSTM reads data from two opposite directions, for-
ward and backward, with the outputs denoted as h

j

� ��
 and h

j

� ��
 respectively. Two sets 

of hidden states are obtained, i.e., for a vector sequence {c1, c2, …, ct}, the state 
sequence { }, , , , ,h h h h

t1 2

� �� � �� � �� ���
� � �… …

j
 is obtained with the forward LSTM network, and 

{ , , , , , }h h h h
1 2

� �� ���� �� � ��
… …

j t
�  is obtained with the backward network. In order to reduce the 

parameter count, the last hidden state of the forward sequence is concatenated with 
the first hidden state of the backward sequence to generate a vector representation 
p for the complete path π, p h h p

t
� ��

�
� �

��� � ��
, ,� �1 ℝk, preserving sequential information. 
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The dimension of hidden states of cells is set to k
2

 facilitate concatenation and 
matching with candidate relations. All n paths are processed simultaneously the 
same encoders in the Time Distributed layer of Keras. The set of vector representa-
tions P = {p1, p2, …, pn}, P ∈ℝk×n is input into the attention layer.

3.3	 Path	integration	with	attention	mechanism

Max and Mean operations ignore the differences in evidential reasoning among 
different paths. The additive attention mechanism proposed by Bahdanau et al. [50] 
is employed for path integration, as it offers greater adaptability for various value 
intervals compared to dot product-based semantic similarity [24], [51]. The correla-
tion score(pi, r) is calculated between each path of the head and tail entity pair and 
the vector representation of the candidate relation r separately, as shown in (1).

 score(pi, r) = tanh(piWs)r (1)

where, Ws ∈ℝk×k is the weight parameter. The weight αi for each path is then 

assigned with the scores,�
i n
�

�
exp score �

exp score �

( ( , ))

( ( , ))

p r

p r

i

i1

. The state vector c of the candi-

date relation is obtained by weighted calculation, c p
i

�� �
i

n

1
 and the probability 

score P(res, et) for the relation is calculated to determine whether the triple is valid, 
shown in (2).

 P(res, et) = f(Wp(c + r)) (2)

The weight parameter Wp ∈ℝk is missing, and it f represents a nonlinear activa-
tion function like the Sigmoid function. With weight allocation, paths with varying 
degrees of semantic correlations to the candidate relation are distinguished. 

The Adam optimizer [56] is used to train CLAP. The loss function is defined as 
equation (3).

 L
N T

( ) ( , ) log ˆ ,
( , , )

� � � � � � ��
� ��1

1logP | P | �
� ��

r e e r e e
s te r e

s t
s t

� � ���
�
�

�
�
� �� �� ( , ˆ , )e r e

s t
� �� � T

� � 2

2

 (3)

Where, N is the total number of training samples is missing. T+,T- represent the 
set of valid triples and invalid triples, respectively. Θ represents all parameters that 
need to be learned (initialized randomly). L2 regularization is adopted to prevent 
overfitting.

4	 EXPERIMENT	AND	ANALYSIS

Physical environment: Experiments are conducted on a Lenovo SR590 server 
with the following hardware configuration: 20-core Xeon*2 processor, 16GB*8 mem-
ory, 1.2TB*3 SAS disks (in RAID5 mode), and a cluster of GTX3080Ti GPUs.

Task description: Link prediction involves inferring new facts for KGC. It com-
putes in which the probability of the connection between a given pair of entities and 
a specific relation to determine the validity of the triple. The ranking of the correct 
answer among all candidates is used for evaluation. Take the tail entity prediction for 
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example, for the query (Joe Biden, is President of ?), we expect “the U.S.” or “America” 
to be ranked first.

Datasets: Two conventional benchmark datasets, FB15k-237 and NELL995, a large 
dataset FC17 (simulating real-world scenarios) [28], [45], and a sparse dataset NELL-
One [46] are utilized, all of which are publicly available. Dataset statistics are shown 
in Table 1, except for NELL-One (a small dataset). In NELL995, the triples with the top 
200 highest frequency relations are kept. Toutanova et al. [38] removed reverse triples 
from FB15k and created FB15k-237 to eliminate high score loopholes. The distribu-
tion of relation patterns in FB15k-237 is more complex than in NELL995. Most from 
the data of FC17 is sourced from Freebase [4] and aligned with ClueWeb [7]. In our 
experiment, we selected 46 relations with the highest frequencies. NELL-One is a sub-
set of NELL that contains the number of triple instances ∈[50,500] for each relation.

Table 1. Dataset statistics

Datasets #Entities #Relations #Train Set #Val. Set #Test Set #Tasks

NELL995 75492 200 154213 5000 5000 12

FB15k-237 14541 237 272115 17535 20466 20

FC17 1.8e7 25994 3.05e5 1.2e4 1.2e4 46

Metrics: Several commonly accepted metrics are adopted, including mean aver-
age precision (MAP), mean reciprocal rank (MRR), Hits@N (proportion of the valid 
triple ranked in the first N candidates, N = 1, 3, 5), precision, recall, and F1 scores. 
The definitions of these metrics are listed from (4) to (8).

 MAP AP�
�
�1

Q
q

r q Q
r

( )  (4)

where Qr is the set of queries, AP refers to the average precision and q ∈Qr.

 MRR �
�
�1 1

Q rankr q Q qr

 (5)

 Precision
TP

TP FP
�

�
 (6)

where TP refers to true positive and FP refers to false positive.

 Recall
TP

TP FN
�

�
 (7)

where FN refers to false negative.

 F
Precision Recall

Precision Recall1
2�

�
.

·  (8)

Baseline models include:

1. TransE [18] (2013) is a classic translation-based distance model. It was only used 
on NELL-One due to performance concerns.

2. DistMult [19] (2015) utilizes diagonal matrices to represent relations.
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3. DeepPath [30] (2017) is a reinforcement learning framework that is based 
on TransE.

4. Single-Model [24] (2017) employed RNN to process relational sequences. 
LogSumExp, as recommended in the original study, is adopted.

5. Att-Model + Type [28] (2017), which could be considered the Single-Model with 
the attention mechanism, was re-implemented in our study.

6. ConvE [20] (2018) utilizes 2D convolution for concatenating entities and relation.
7. G-GAT [52] (2019) utilized the attention mechanism to extract neighbor features 

and focused on relation prediction in complex datasets. The results on FB15k-237 
from the original study are cited.

8. M-walk [29] (2018) combines RL and RNN, but it is only used on conven-
tional datasets.

9. GMH [45] (2020) is a multi-hop reasoning framework that emphasizes both local 
features and the overall graph structure. It is designed for complex scenarios 
and was only used on FC17.

10. G-matching [46] (2018) is a support framework for few-shot reasoning that pri-
marily exploits local patterns. The performance of CLAP, TransE, and DistMult 
(with and without G-matching) is compared on NELL-One.

GMH takes pre-trained embeddings of ConvE as input and achieves the best per-
formance when the upper limit of distance is set to 6. For other models, recom-
mended hyperparameters from the original studies are adopted.

Implementation Details: The reliability and reasoning efficiency of long paths 
gradually decline, so the path length limit is set to 4. Correspondingly, the maximum 
number of elements is 9, including intermediate entities or fillings. Set the proba-
bility threshold of the random alk to 0.1. The Bernoulli distribution [32] is used to 
generate invalid triples by randomly replacing head or tail entities. 

Performance is verified on Val. Set. If the improvement in accuracy in the last 
10 epochs < 10-2, the training is stopped, and the parameters are finalized. The upper 
limit of epochs is set to 1000, and in most cases, the training stops with fewer than 
500 epochs. Grid Search is employed to find optimal hyperparameters. The hyper-
parameter pool is as follows: minibatch size = 64, learning rate, γ ∈[1e-5, 1e-4, 5e-4] 
dimension, k ∈[50, 100, 200], number of hidden nodes in LSTM, and ∈[64, 128], 
τ ∈[50, 100], L2 regularization coefficient, ∈[0, 0.001, 0.01,0.1,0.5]. For other parame-
ters in Adam, the default setting is adopted.

Results on conventional datasets are shown in Table 2. The best performance is 
in bold, and the sub-optimal is in italic with underline. The slash indicates that the 
original results are unavailable. CLAP performs best overall and shows improve-
ment over two similar methods, Single-Model and Att-Model + Type, particularly on 
the complex dataset FB15k-237. It maintains the same level of time complexity for 
both training and prediction. On NELL995, due to the limited number of paths for 
certain entity pairs, path-based models show a slight decrease in performance at 
Hits@1, 3, whereas CLAP remains relatively stable. DistMult is effective in extract-
ing entity similarity features, achieving high mean reciprocal rank (MRR) scores 
on both datasets without taking path semantics into account. On the dense dataset 
NELL995, DeepPath compensates for the limited expressivity caused by translation 
operations with RL-based path extension and maintains stability across various 
indicators. ConvE performs well on NELL995, while scores plunge on FB15k-237. 
This implies that concatenation and reshaping may help extract relational features, 
but neglecting translation attributes may lead to local pattern losses. G-GAT, designed 
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for complex datasets, outperforms DeepPath but is outperformed by Att-Model + 
Type. This suggests that multi-hop paths could offer richer semantics compared 
to single-hop neighbors. Nathani et al. also discuss their intention to incorporate 
additional semantic information, such as text descriptions. M-walk achieves the 
highest score at Hits@1 on NELL995 but faces interference from invalid paths on 
FB15k-237.

Table 2. Performance comparison on NELL995 and FB15k-237

Dataset NELL995 FB15k-237

Model MAP MRR Hits@1 Hits@3 MAP MRR Hits@1 Hits@3

DistMult / 0.860 0.752 0.865 / 0.558 0.446 0.573

DeepPath 0.811 0.852 0.808 0.884 0.553 0.495 0.449 0.524

Single-Model 0.827 0.833 0.765 0.903 0.525 0.512 0.496 0.557

Att-Model + Type 0.838 0.847 0.783 0.905 0.558 0.556 0.513 0.626

ConvE / 0.862 0.826 0.919 / 0.509 0.430 0.527

G-GAT / / / / / 0.518 0.460 0.540

M-walk 0.829 0.848 0.834 0.910 0.532 0.488 0.475 0.543

CLAP 0.846 0.859 0.829 0.941 0.564 0.589 0.528 0.671

Select outstanding baselines and compare their MAP scores on different relations 
in NELL995. The results are shown in Figure 2. DeepPath only considers local fea-
tures, while Single-Model does not differentiate the weights for paths with varying 
degrees of semantic correlations. CLAP addresses these shortcomings across all 10 
relations. Compared with Att-Model + Type, CLAP outperforms in 7 relations, partic-
ularly in complex relations such as atheletePlaysForTeam and bornLocation. This sug-
gests that the fusion of convolutional feature extraction and BLSTM path merging is 
beneficial for knowledge representation.

Fig. 2. Comparison of MAP scores on various relations of NELL995

https://online-journals.org/index.php/iTDAF
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Results on FC17 are shown in Table 3. CLAP achieves the highest scores in all 
three indicators. Compared with Att-Model + Type, GMH considers the overall 
graph structure, enhancing accuracy in recognizing valid relations and mitigating 
the effects of incorrect relations in long-distance reasoning. However, the compu-
tational cost is high, and the model converges slowly. For CLAP, the path length is 
set manually, while GMH can adaptively adjust the threshold, which is saved for 
future work.

Table 3. Performance comparison on FC17

Model MRR Hits@1 Hits@3

Att-Model + Type 0.243 0.114 0.154

GMH 0.254 0.139 0.183

CLAP 0.282 0.146 0.188

Results on Nell-One are displayed in Table 4. Without G-matching, CLAP is stron-
ger than TransE and DistMult, demonstrating the significance of integrating path 
semantics. After G-matching is applied, the scores of all three models increase, 
indicating that single-hop local structure is helpful in discovering similar facts. 
The proportions of improvement are 94.0% (TransE), 65.7% (DistMult), and 6.2% 
(CLAP) respectively, suggesting that the neighboring information could be effectively 
replaced with path semantics to a great extent.

Table 4. Performance comparison on NELL-One

Model MRR Hits@1 Hits@5

TransE 0.083 0.039 0.147

DistMult 0.105 0.066 0.136

CLAP 0.178 0.108 0.197

G-matching (TransE) 0.161 0.129 0.210

G-matching (DistMult) 0.174 0.114 0.202

G-matching (CLAP) 0.189 0.143 0.226

An extended study was conducted to evaluate the effects of different entity type 
coverage, various path lengths, and different LSTMs on NELL995. The results are 
presented in Table 5. Most entities in NELL995 carry type information, while embed-
ded representations are employed for others. The differences among various cover-
age options are minimal. When the coverage is low, performance slightly decreases 
if the Test Set contains entities that do not appear in the Train Set. When the path 
length is set to 4, performance increases slightly, implying: (1) there are not enough 
paths between some entity pairs when the threshold is small; and (2) short paths 
provide most of the semantic information. Different LSTMs have trivial impacts.

Single-Model and Att-Model + Type were selected for comparison based on indi-
cators such as Precision, Recall, and F1 scores on NELL995. The results are shown 
in Figures 3 and 4. CLAP demonstrates a more balanced performance and achieves 
higher F1 scores compared to the baselines. When the recall score increases, the 
decline curve of precision is relatively smooth, implying the superiority of the frame-
work, especially the advantages of integrating convolutions.
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Table 5. Comparison between different coverage, path lengths, and LSTM models on NELL995

MAP MRR Hits@1 Hits@3

Coverage = 30% 0.842 0.855 0.824 0.936

Coverage = 70% 0.845 0.861 0.825 0.939

Coverage = 100% 0.846 0.859 0.829 0.941

Path Length = 3 0.833 0.842 0.817 0.926

Path Length = 4 0.846 0.859 0.829 0.941

BLSTM [27] 0.841 0.857 0.827 0.937

Bi-GRU [55] 0.845 0.852 0.828 0.941

Our BLSTM 0.846 0.859 0.829 0.941

Fig. 3. Comparison of precision, recall and F1 scores on NELL995

Fig. 4. Comparison of precision-recall curve on NELL995
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5	 CONCLUSION

For better feature extraction and path semantics recognition, a customized CNN 
framework combines the bidirectional LSTM and the attention mechanism. This inte-
gration aims to enhance entity and relation interactions, merge relational sequences 
into single vectors, and integrate path semantics with weights to compute triple 
probability scores. Experimental results show that CLAP has a strong learning ability 
for complex relations and can conduct knowledge reasoning on conventional, large, 
and sparse datasets, achieving overall higher precision, recall, and F1 scores. Still, 
there is room for improvement in datasets that do not offer enough paths for entity 
pairs. Therefore, future work includes utilizing the RL framework, introducing fact 
confidence [57], integrating multi-modal information, and/or expanding embedding 
spaces for higher expressivity.
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