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PAPER

Early Prediction of Monkeypox Virus Outbreak  
Using Machine Learning

ABSTRACT
At the onset of an infectious disease, such as the monkeypox virus (MPXV), surveillance data 
is crucial in keeping track of the outbreak’s progression. The surveillance data for MPXV 
received considerable attention after multiple European countries recorded cases. Historical 
data obtained from May 9, 2022, to August 10, 2022, were used to model the cumulative 
case trajectories of MPXV in five countries. Our study employed autoregressive integrated 
moving averages (ARIMA), neural network autoregression (NNETAR), exponential smooth-
ing (ETS), and seasonal naïve regression (SNAÏVE) for training and evaluation. The paper 
makes the following contributions: (1) enhanced model stability with the Box-Cox transfor-
mation as a preprocessing step, (2) experimentation with both linear and non-linear models, 
and (3) simulation of the top five countries during the impulsive rise in cases of MPXV. The 
results were evaluated using three metrics: root mean square error (RMSE), mean square 
error (MAE), and mean absolute percentage error (MAPE). The ARIMA (0,1,3) (1,0,0)[7] 
model yielded the lowest percentage error of 5.16 in the holdout set for MAPE in France 
observations. The ETS (A, A, A) model, the lowest percentage error in the holdout set for MAE 
was 7.35 in Germany. Regarding the NNETAR (1,1,2) [7] model, the lowest percentage error 
in the holdout observations for RMSE was 8.33 in Spain, 2.75 in the United Kingdom (UK), 
and 8.05 in the United States of America (USA) in that order. Based on these findings, we can 
conclude that while the transformation proved crucial for model performance, it was not 
necessary for all experiments, as ARIMA remained dominant in France and the ETS model 
in Germany. At the same time, NNETAR model outperformed in cumulative case counts in 
Spain, the UK, and the USA. Our experimentation allows for early identification and contrib-
utes to a better understanding of forecasting MPXV cases using combinations of both linear 
and nonlinear models.
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NOMENCLATURE
AIC Akaike Information Criterion
A.R. Autoregressive
ARIMA Autoregressive Integrated Moving Average
ETS Exponential Smoothing
MA Moving Average
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MPXV Monkeypox Virus
RMSE Root Mean Square Error
USA United States of America
UK United Kingdom
WHO World Health Organization

1	 INTRODUCTION

Epidemiological analysis plays a central role in the public health system of a 
country [1]. Healthcare-associated infections and microbial threats pose significant 
health risks [2]. The emergence of severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) [3] and the recent increase in cases of monkeypox virus (MPXV) cases 
in countries where outbreaks are rare or non-existent [4] raises concern. Time-
series techniques allows for forecasting of future dynamics, enabling the develop-
ment of robust surveillance systems to characterize MPXV diseases in a population 
[4],[5]. Epidemiological time-series analyses utilize past surveillance data to fore-
cast future disease incidence. Researchers have applied various time-series models 
in related studies using statistical [6], machine learning, deep learning, and hybrid-
ized models [1]; [5]–[7]. Regarding MPXV, forecasting cases is challenging due to the 
limited availability of surveillance data. In one of the earliest reports [8], cumulative 
case growth was compared between two periods, while a recent study used timely 
insights early human judgment forecasts [9]. Alternatively, the classical approach 
can offer governments and organizations by forecasting MPXV cases using surveil-
lance data.

MPXV is a zoonotic virus that belongs to the orthopoxvirus family [8]. 
Martín-Delgado et al., [10] noted that the first such case occurred in the early 
seventies. MPXV was previously known to be endemic in Central African coun-
tries [4], [11]. In 2003, multiple cases were reported in the USA among individuals 
in contact with animals imported from outside the country [12]. More recently, 
MPXV cases emerged in Portugal, Spain, and the UK in May 2022 [11]. On July 23, 
2022, the World Health Organization (WHO) declared MPXV as a global health 
emergency [13] based on surveillance data from six WHO regions reporting sus-
pected cases. The report further noted that transmission occurs through close and 
intimate physical contact with infected individuals. The WHO recommends con-
trol measures, including vaccination [11], as well as preventive measures, includ-
ing infection regulation in non-human primates such as rodents, squirrels, and 
dormice [10].

Various techniques have been employed for epidemiological forecasting, using 
both linear and non-linear techniques. When modelling MXPV transmission, 
the susceptible, exposed, infectious, and recovered (SEIR) framework has been 
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considered [14]. Linear approaches, such as autoregressive integrated moving 
average (ARIMA) [15] and exponential smoothing (ETS) [16], are commonly used 
as generalized baseline approaches in several forecasting tasks. In recent years, 
non-linear machine learning approaches have gained popularity. One technique 
used in infectious disease modelling is the incorporation of the artificial neural 
network (ANN) with other generalized time-series techniques, as demonstrated by 
[17]. The selection of features is crucial in determining models for epidemiological 
time-series forecasting, including factors such as incidence rate, region, population 
diversity, and health status. Recent forecast approaches have utilized hybrid models 
that combine both linear and non-linear techniques characterized with comparable 
levels of accuracies and forecast horizons [18]–[22].

Based on historical data, we developed short-term forecasts for MPXV cases in 
five countries. Furthermore, a comparative analysis of three assessment metrics, 
the root mean square error (RMSE), mean square error (MAE), and mean absolute 
percentage error (MAPE), was conducted to evaluate the performance of the four 
models. There was a strong correlation between the MPXV cumulative case test 
data and the results obtained from other models. The study reveals that NNETAR 
outperformed all the other techniques in four out of the five countries. The NNETAR 
results were applied to all three-performance metrics. ARIMA outperformed the 
other techniques in one of the five countries, and this superiority was consistent 
across all three metrics. We further observed that NNETAR outperformed ARIMA 
in three countries, while ARIMA performed better than others techniques for the 
cumulative MPXV case counts in the USA. Our analysis suggests that the efforts to 
reduce MPXV spread in the four European countries were part of a unified strat-
egy adopted across the European states. In contrast, case counts emerged in the 
USA several weeks after the European countries had reported cases. The measures 
implemented in the USA to control MPXV spread did not align with the observed 
case counts during the time of the experiment. In Germany, after applying the 
Box-Cox transformation, the ETS technique demonstrated superior performance 
compared to other techniques. The SNAÏVE regression approach was implemented 
as a benchmark.

This study conducted a comparative analysis of time-series forecasting for 
MPXV surveillance data from the five most impacted countries as of August 10, 
2022. Epidemiological time-series analysis is well-established, encompassing both 
linear and non-linear models. In this study, ARIMA, ETS, and NNETAR techniques 
were employed to forecast MPXV cases, showcasing their potentials for early MPXV 
predictions. The remainder of this paper is organized as follows. Section II dis-
cusses the surveillance data, techniques, and performance metrics used in the 
study. Section III present the details of the model experiments and identifies the 
most suitable model for MPXV surveillance data. Finally, the conclusions are pre-
sented in Section IV.

2	 METHOD

2.1	 Data

The MPXV surveillance data used in this study were obtained from the freely 
shared Our World in Data repository [12]. Table I lists the countries in the MPXV 
dataset along with their corresponding cumulative case counts. For evaluation 
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and forecasting purposes, the cumulative daily case counts of the five countries 
were considered up until August 10, 2022. The data observations were mod-
est, and a higher-ranking forecasting technique was expected as MPXV sur-
veillance data evolved. Approximately 30,000 MPXV cases have been reported. 
Eighty-seven countries without historical MPXV cases account for 92%, and 
seven countries with historical MPXV cases only accounting for 8% [23]. The 
explanatory variables were the daily time-interval stamps, while the response 
variables were the cumulative case counts of MPXV surveillance data in the five 
most-impacted countries under investigation. The surveillance record of France 
and Germany’s spanned a duration of eighty-four days, starting from May 19, 
2022. In Spain and the USA, surveillance records began on May 18, 2022, and 
lasted for eighty-five days. In the UK, it started on May 6, 2022, and covered a 
period of ninety-four days.

2.2	 Data	transformation

We applied the Box–Cox transformation to the MPXV using surveillance data to 
increase the distribution of residuals and stabilize the variance [24], as indicated 
by the value of λ in Table 1. The transformation was implemented [25], which 
is relevant for selecting variance-stabilizing and bias-reduction techniques. The 
resulting series from the Box-Cox transformation exhibited a uniform Gaussian 
distribution. However, it should be noted that, assumptions of normality were 
violated due to heavily tailed data observations, resulting in less informative 
regression analysis. Nevertheless, the Box–Cox transformation ensured stability 
in the power transformation. Density distribution plots from Figures 1 to 5 were 
presented for the five most-impacted countries prior to the application of the 
Box-Cox transformation. These distribution plots were right-tailed distributions 
and failed the critical test for an approximately normal distribution. Visual obser-
vation were combined with statistical tests to demonstrate acceptable deviations 
from the standard lines. The Box-Cox transformation then applied to significantly 
boost the model fit.
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Fig. 1. MPXV Density distribution in France from June 19th to August 10th 2022

https://online-journals.org/index.php/iTDAF


 18 IETI Transactions on Data Analysis and Forecasting (iTDAF) iTDAF | Vol. 1 No. 2 (2023)

Akinola et al.

0

De
ns

ity

MPXV Cases Counts

0e+00

2e-04

1e-04

3e-04

4e-04

1000 2000 3000

Fig. 2. MPXV Density distribution in Germany from May 20th to August 10th 2022

0

De
ns

ity

MPXV Cases Counts

0e+00

2e-04

1e-04

3e-04

1000 30002000 50004000

Fig. 3. MPXV Density distribution in Spain form May 18th to August 10th 2022
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Fig. 4. MPXV Density distribution in the UK from May 7th to August 8th 2022
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Fig. 5. MPXV Density distribution in the USA from June 6th to August 10th 2022
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In equation (1), λ is the index log transformation, and the observation time xi is 
nonzero for the observed time-series. The transformed shifts for France, Germany, 
Spain, the UK, and the USA are listed in Table 1. France had the smallest converted λ 
value, whereas Germany had the highest transformed value.

Table 1. MPXV cases and transformed values

S/N Country Cumulative Cases Λ*

1 France 2591 0.42

2 Germany 3025 0.51

3 Spain 5162 0.34

4 United Kingdom 3022 0.48

5 USA 10360 0.04

Note: *MPXV case Box-Cox values as λ.

2.3	 MPXV	surveillance	data	decomposition

The time-series exhibits multiple compositions [26]. In the MPXV surveillance 
data for the five countries, each underlying component contributes significantly to 
the time series, including the three underlying components: trend, seasonal, and 
remainder.

2.4	 Methodology

The Naïve Method was popularized for financial time series [26], and it was pro-
posed that variations in observations are similar in distribution and independent of 
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each other. In the naive technique, future forecasts are based on previous observa-
tions, as illustrated in equation (2).

 ˆ
| ( )

y y
T h T T h m k� � � �

�
� 1

, (2)

where ˆ
|

y
T h T+

 is the estimation of y1,…,yT, m is the seasonal period, and k is the num-
ber of completed periods before a forecast.

The Autoregressive Integrated Moving Average (ARIMA), developed by Box 
and Jenkins [15], is a well-established time series analysis model. In equation (3), 
three components are estimated for ARIMA (p, d, q).

 ˆ ˆ ˆ .y c y y
t t p p t q t p t�
� � ��� � ��� �

� � � �
� � � � � � �
1 1 1 1 1

 (3)

The ŷ
t n+

 forecast is a function of multiple orders of p, autoregressive (A.R.) com-
ponent, d, order of difference, and q, order of moving average (M.A.). c is the mean 
difference between successive observations. The εt component specifies the model 
white noise, ϕ1, ϕ2, …, ϕp, is the A.R. component, and θ1, θ2, …, θp, represents the M.A. 
components.

The Neural Network Autoregression (NNETAR) method combines neural 
networks with augmented reality (A.R.) parameters. Neural networks comprise 
three layers: input, hidden, and output [26]. A node in a layer is connected in two 
parts: the summation of hidden inputs with weights and an activation function to 
determine the summed output. Neural networks are forecasting techniques used for 
non-linear observations. NNETAR is a hybrid model capable of modelling complex 
linear and non-linear relationships. NNETAR (p, o) has two components: p lags and o 
hidden-layer nodes. In seasonal NNETAR (p, P, o) m, P is the number of seasonal lags, 
and m is the seasonal component.

The Exponential Smoothing (ETS) model utilizes weighted lags that decay 
exponentially [16]. The unobserved components of ETS, including error, trend, and 
seasonality, are described using state-space models. ETS is widely applied in the 
financial industry where similar variable observations are encountered. ETS mod-
els encompass combinations of none (N), additive (A), and multiplicative (M) com-
ponents for errors, trends, and seasonal states. For example, ETS (A, N, N) is a simple 
exponential smoothing with an additive error, ETS (M, N, N) is a simple exponential 
smoothing with a multiplicative error, and other state-space exponential smoothing 
techniques can be derived. ARIMA, NNETAR, and ETS models have been well evalu-
ated in epidemiological time-series forecasting, with competitive evaluation results 
in test data.

2.5	 Evaluation

Mean Square Error (MAE) represents the mean scale of the inaccuracy from a set 
of forecasts. Specifically, MAE determines the variation between absolute and fore-
cast values [27]. Equation (4) illustrates MAE.

 MAE
T

y y
t t

t

T

� �
�
�1

1

ˆ . (4)

Root Mean Square Error (RMSE) is an error metric for the average scale of 
errors. RMSE describes how concentrated the data fit the optimal model. The RMSE 
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is a widely applicable metric for time-series forecasting tasks. Equation (5) illus-
trates the RMSE.

 RMSE
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t t
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N

�
�

�
�( ˆ )2

1 . (5)

Mean Absolute Percentage Error (MAPE) can also be described as mean abso-
lute percentage deviation (MAPD). The MAPE denotes the significance of the error 
values relative to the observed values. Equation (6) describes MAPE as

 MAPE
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In (4), (5), and (6), ŷ
t �
 denotes the predicted value, yt denotes the actual value, and   

T is the number of observations.

2.6	 Workflow

As shown in Figure 6, the MPXV cumulative case data contained no missing data. 
We split the MPXV surveillance data into training and test sets. The Box-Cox tech-
nique was used to transform the training data, which were used to train ARIMA, 
ETS, NNETAR, and SNAIVE models. The models were evaluated using the MPXV 
cumulative case test data.

Fig. 6. Proposed workflow for the MPXV cumulative case-forecasting task
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3	 RESULTS	AND	DISCUSSION

The models for MPXV surveillance data from the five countries were developed 
using the R Studio, along with the fpp3 [26], and timetk packages [28]. The training 
dataset consisted of 91% of the MPXV surveillance data, while 9% was reserved for 
testing. The independent MPXV surveillance test data for each country were evalu-
ated using the ARIMA, NNETAR, SNAIVE, and ETS models. In the ARIMA model selec-
tion, the Auto.Arima fpp3 package was used to optimize the discovery of the Akaike 
information criterion (AIC) approximation for model estimation. NNETAR offers 
competitive estimations by automatically determining the appropriate specifications 
for lags and neurons using the fpp3 package. The best-performing ETS model was 
automatically selected from the optimized AIC discovery using the fpp3 package. The 
test data results were obtained using the ARIMA, NNETAR, SNAIVE, and ETS models.

We conducted a seven-days forecast for the five most-impacted countries starting 
from August 4, 2022. The results of the forecasting models are presented in Tables 2 
and 3, and the corresponding plots are shown in Figures 7 to 11. To evaluate the perfor-
mance of the models, we used the RMSE, MAE, and MAPE metrics. The NNETAR model 
demonstrated superior performance in Spain and the UK without applying the Box-
Cox transformation. However, after implementing the Box-Cox transformation, the 
model’s performance improved in the USA, resulting in a total of three countries where 
NNERAR outperformed. On the other hand, the ARIMA model outperformed in France, 
Germany, and the USA before applying the Box-Cox transformation. Implementing the 
Box-Cox transformation failed to improve the error scores in France and Germany.

Table 2. Performance evaluation of MPXV surveillance data

Model RMSE MAE MAPE Country
NNETAR (1,1,2) [7] 3.38E+02 3.28E+02 1.40E+01

France
ETS(A,Ad,A) 4.39E+01 3.68E+01 1.59E+00

ARIMA (0,2,1) (0,0,1) [7] 1.63E+02 1.56E+02 6.72E+00

SNAIVE 4.03E+02 4.02E+02 1.74E+01

NNETAR (1,1,2) [7] 1.22E+02 1.16E+02 3.95E+00

Germany
ETS(A,A,A) 5.01E+01 4.49E+01 1.55E+00

ARIMA(1,2,4)(1,0,0)[7] 4.84E+01 4.53E+01 1.55E+00

SNAIVE 2.79E+02 2.78E+02 9.54E+00

NNETAR(1,1,2)[7] 2.40E+02 1.93E+02 3.88E+00

Spain
ETS(A,A,N) 2.72E+02 2.46E+02 5.20E+00

ARIMA(0,2,1) 2.60E+02 2.32E+02 4.92E+00

SNAIVE 7.48E+02 7.39E+02 1.56E+01

NNETAR (1,1,2) [7] 4.61E+01 3.95E+01 1.36E+00

United
Kingdom

ETS(A,A,A) 1.06E+02 1.03E+02 3.61E+00

ARIMA (1,2,2) 1.00E+02 9.09E+01 3.22E+00

SNAIVE 3.02E+02 2.99E+02 1.06E+01

NNETAR (1,1,2) [7] 1.68E+03 1.51E+03 1.98E+01

USA
ETS(M,A,N) 4.16E+02 3.34E+02 4.33E+00

ARIMA (0,2,1) (1,0,0) [7] 2.80E+02 2.42E+02 3.28E+00

SNAIVE 2.53E+03 2.50E+03 3.42E+01
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Table 3. Performance evaluation of MPXV surveillance data with box-cox transformation

Model RMSE MAE MAPE Country

NNETAR (1,1,2) [7] 2.49E+02 2.39E+02 1.02E+01

France
ETS(A,A,A) 9.71E+01 8.98E+01 3.89E+00

ARIMA (0,1,3)(1,0,0)[7] w/ drift 9.24E+01 7.61E+01 3.25E+00

SNAIVE 3.70E+02 3.69E+02 1.59E+01

NNETAR (1,1,2) [7] 7.25E+01 6.60E+01 2.25E+00

Germany
ETS(A,A,A) 5.04E+01 4.16E+01 1.44E+00

ARIMA (2,1,2)(1,0,1)[7] w/ drift 5.62E+01 4.89E+01 1.67E+00

SNAIVE 2.53E+02 2.52E+02 8.64E+00

NNETAR (1,1,2) [7] 2.20E+02 1.72E+02 3.45E+00

Spain
ETS(A,A,N) 5.77E+02 5.43E+02 1.13E+01

ARIMA (0,1,0) w/ drift 5.81E+02 5.47E+02 1.13E+01

SNAIVE 6.50E+02 6.39E+02 1.35E+01

NNETAR (1,1,2) [7] 3.34E+01 3.20E+01 1.12E+00

United
Kingdom

ETS(A,A,A) 1.60E+02 1.48E+02 5.17E+00

ARIMA (0,1,1) (1,0,0) [7] w/ drift 1.56E+02 1.50E+02 5.24E+00

SNAIVE 2.80E+02 2.77E+02 9.82E+00

NNETAR (1,1,2) [7] 3.27E+02 2.79E+02 3.68E+00

USA
ETS(A,A,A) 1.40E+03 1.29E+03 1.71E+01

ARIMA(0,1,1)(2,0,0)[7] w/ drift 9.88E+02 8.40E+02 1.10E+01

SNAIVE 1.69E+03 1.66E+03 2.26E+01

Implementation of the Box-Cox transformation resulted in lower errors when 
compared to models without transformation, except for the ETS(A, A, A) model for 
France, Germany, the UK, and the USA; and the ETS(A, A, N) model for Spain. Similar 
results were observed for the ARIMA (2,1,2)(1,0,1)[7] model w/drift for Germany, 
ARIMA (0,1,0) w/drift for Spain, ARIMA (0,1,1) (1,0,0) [7] w/drift for the UK, and ARIMA 
(0,1,1)(2,0,0)[7] w/drift model for the USA, except for ARIMA (0,1,3)(1,0,0)[7] w/drift for 
France. The drift is an equivalent alignment between the start and end point observa-
tions, leading to forecast extrapolation [26]. The percentage changes in RMSE for the 
ARIMA model were 76%, –72%, –36%, –55%, and –14% for France, the USA, the UK, 
Spain, and Germany, respectively. In the same country order, the 105%, –71%, –39%, 
–58%, and –7% for MAE and 107%, –70%, –39%, –56%, and –7% MAPE was observed. 
The percentage changes in RMSE for the ETS model were –55%, –1%, –53%, –34%, 
and –70% for France, Germany, Spain, the UK, and the USA, respectively. Moreso, in 
the same country order, –59%, 8%, –55%, –30%, and –74% for MAE and –59%, 8%, 
–54%, –30%, and –75% for MAPE was registered. The percentage changes in RMSE 
for the NNETAR model were 36%, 68%, 9%, 38%, and 414% for France, Germany, 
Spain, the UK, and the USA, respectively. Again, in the same country order, 37%, 76%, 
12%, 23%, and 441% for MAE and 37%, 76%, 12%, 21%, and 438% for MAPE was 
noted. The percentage changes in RMSE for the SNAIVE model were 9%, 10%, 15%, 
8%, and 50% for France, Germany, Spain, the UK, and the USA, respectively. In the 
same country order, for MAE and MAPE, it was found to be 9%, 10%, 16%, 8%, and 
51%, respectively.
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In the results of the Box-Cox transformation for the five most-impacted countries, 
the France ARIMA (0,2,1) (0,0,1) [7] model parameters had no A.R. component, a 
second lag order difference in the nonseasonal model, an A.R. order of two, and an 
M.A. order of one. In contrast, the seasonal component had an M.A. lag order of one. 
In the Germany ARIMA(1,2,4)(1,0,0)[7] model parameter, the A.R. had a lag order 
of one, a second lag order difference, and an M.A. lag order of four and one in the 
nonseasonal and seasonal components, respectively. The Spain ARIMA(0,2,1) model 
parameter had a nonseasonal second-order lag difference and an M.A. lag order of 
one. The UK ARIMA (1,2,2) had a nonseasonal A.R. with lag one, a second lag order 
difference, and an M.A. lag order of two. ARIMA (0,2,1) (1,0,0) [7] parameters, a non-
seasonal second lag order difference and a nonseasonal M.A. lag order of one and 
one A.R. lag in the seasonal component, respectively.

NNETAR had one input lag in the first nonseasonal value, one seasonal input 
value, two neurons in the hidden layer, and seven neurons, as indicated by the sea-
sonal period for all the five most-impacted countries by August 10, 2022. The five 
most-affected countries in the ETS(A, A, A) model were purely addictive.
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Figures 7 to 11, the trajectory of MPXV cumulative cases for the five most-impacted 
countries is depicted. The figures on the left are untransformed, and the ones on the 
right are from the Box-Cox transformation. In Figure 7, France’s MPXV cumulative 
cases plateaued from August 4, 2022, to August 8, 2022, and the trend in MPXV cumu-
lative cases exceeded 25,000. The ARIMA and ETS models capture forecast distribu-
tions with higher accuracy. Figure 8 illustrates Germany’s MPXV cumulative cases 
and it shows how it plateaued from August 5, 2022, to August 7, 2022, and the trend 
in MPXV cumulative cases exceeded 3000. The ETS model captured the forecast dis-
tribution with higher accuracy. Figure 9 reveals how Spain’s MPXV cumulative cases 
plateaued from August 5, 2022, to August 8, 2022, and from August 9, 2022, with 
cumulative MPXV cases exceeding 5000. The NNETAR model captured the forecast 
distribution with higher accuracy. Figure 10 shows that the MPXV cumulative cases 
for UK plateaued from August 4, 2022, to August 8, 2022, and from August 9, 2022, 
with MPXV cumulative cases exceeding 3000. The NNETAR model also captures the 
forecast distribution with higher accuracy. In Figure 11, a steep trend is observed in 
the USA MPXV cumulative case test data with a brief plateau from August 5, 2022, 
to August 7, 2022. There was a consistent rise afterwards, and the cumulative MPXV 
cases exceeded 10,000. The NNETAR model in the USA forecasts trailed early from 
August 4, 2022, and drifted off-course after August 7, 2022.

This study shows how to optimize performance using the NNETAR, ARIMA, 
and ETS models with the Box-Cox transformation. The most noticeable difference 
in our investigation from other studies is that the MPXV cumulative case test data 
was implemented as a time-series for seven-day forecasts for the five most-affected 
countries as of August 7, 2022. Generalized time-series models are limited by their 
underlying assumptions, such as stationarity or the number of observations in the 
time series. An extensive test of hybridized A.R. and ANN models is widely accepted 
and justifiable for overall performance. The NNETAR model demonstrated compara-
ble performance to the MPXV cumulative case test data when compared to ARIMA 
and ETS for the MPXV cumulative performance. In France, Germany, Spain, and the 
UK, persistence, or a long plateau, has revealed a decline in daily MPXV cases. This 
trend indicates that the response strategy to effectively contain the spread of MPXV 
cases in all four European countries. When compared to the ARIMA and ETS mod-
els, the NNETAR model with Box-Cox transformation exhibited higher accuracy for 
the USA MPXV test data. The trend of cumulative MPXV cases in the USA demands 
stringent measures to curb the increase in cases. Comparing our results with [9] and 
[10], we observed that gathering surveillance data is essential for tracking the cumu-
lative MPXV case counts. Surveillance data plays a crucial role for understanding 
the dynamics of MPXV and reducing infections across regions. The crowdsourced 
ensemble probabilistic approach [10] for MPXV prediction serves as a valuable early 
tool for assessing the spread trajectories. One limitation of the approach adopted by 
[9] and [10] is the need for underlying compositions of the crucial features that are 
fundamental to time-series decomposition models.

4	 CONCLUSION

A time-series analysis of the dynamic trajectory of MPXV outbreaks was conducted 
in the five most affected countries as of August 10, 2022. The machine learning models 
were trained using MPXV surveillance datasets from France, Germany, Spain, the 
UK, and the USA. We forecasted a seven-day horizon using NNETAR, ARIMA, ETS, 
and SNAIVE models. The hybrid NNETAR model, when applied with the Box-Cox 
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transformation, performed well in three countries. The models predicted that MPXV 
cases would plateau or decelerate in four European countries. In contrast, the ARIMA 
and ETS forecasts showed a steady increase in cumulative MPXV cases in the USA. 
We conclude that hybrid models with neural networks play a crucial role in time 
series forecasting. As a result, the investigation offers valuable insights to profes-
sionals and scientists who focus on epidemiological time series analysis, offering 
strategies for controlling the onset of an outbreak of MPXV.

The MPXV surveillance dataset comprises fewer than 100 observations from the 
five most-affected countries. For future experiments, a large number of MPXV obser-
vation datasets will be required to employ robust techniques and enhance forecast 
performance. MPXV can be analyzed using other machine learning ensemble types, 
including both linear and non-linear approaches. Furthermore, multivariate impu-
tation techniques can be used to enhance the feature enrichment and improve the 
performance of MPXV predictions.
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