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A Review of Joint Applications of IoT and Deep Learning

ABSTRACT
In recent years, graph convolutional networks (GCNs) have been widely used in image classi-
fication tasks. The combination of GCNs and the Internet of Things (IoT) has led to the devel-
opment of some branches of the latter. This paper explores cases where convolutional neural 
networks and GCNs are combined with IoT to achieve better results. This paper also focuses on 
discussing the semi-supervised classification task of GCNs. The innovative approach explored 
for innovative GCNs dealing with semi-supervised classification tasks lies in optimizing the 
GCN topology and using graph convolutional operations in the topological space for better 
training of the model.
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1	 INTRODUCTION

Image classification, object localization, semantic segmentation, and instance seg-
mentation are the basic tasks of computer vision [1]. While the image classification 
task is the core task in computer vision, its goal is to distinguish different categories 
of images based on different features reflected in the image information. A category 
label is selected for a given input image from a known set of category labels.

Deep learning is a machine learning technique that has been developing rapidly 
in recent years and that realizes feature extraction and classification by constructing 
neural networks to simulate human brain functions. IoT technology image classi-
fication techniques are applied to face recognition, environmental monitoring [2], 
etc. K-nearest neighbor algorithms and support vector machines perform well on 
simple image classification but underperform on complex images. K-nearest neigh-
bor algorithms are overly reliant on selecting the distance metric function and 
the parameter K [3], which leads to the degradation of classification performance. 
Although extreme learning machines have some advantages in image classification, 
such as fast training speed and simple implementation, they also have some draw-
backs, including poor robustness to noise [4] and overfitting problems. The primary 
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purpose of image preprocessing is to improve the reliability of feature extraction, 
image segmentation, matching, and recognition by eliminating irrelevant infor-
mation from the image, recovering valuable and true information, enhancing the 
detectability of the information in question, and minimizing the data. In the model 
evaluation session, training is usually performed using the classifier trained on a 
training set [5, 6]. The validation set is generally used to predict performance and 
observe the model for overfitting or underfitting problems. The test set evaluates 
the performance with metrics such as accuracy, precision, specificity, recall, and 
F1-score. For cross-validation, no validation set is needed.

The joint application of deep learning and IoT has led to a broader scope 
of research and application of the former. In the development of cross-research 
between the two fields of deep learning and IoT, most cases have demonstrated 
the superiority of adapting to complex tasks compared to traditional methods. 
Lin et al., (2023) [7] pointed out that IoT suffers from the large size of assets, complex 
and diverse structures, and scarcity of computational resources compared with the 
characteristics of the traditional Internet. Moreover, they stated that IoT encounters 
many significant challenges in this era of vast amounts of data and information: 
large quantities of data redundancy, bottlenecks in cloud processing power, data 
security, and privacy. In the related research on intrusion detection techniques, it 
was found that most intrusion detection techniques fail to meet the actual demand 
standards of IoT, and there are also problems of poor detection of complex network 
intrusion methods [8].

Therefore, we focus on some of the classical model development cases of deep 
learning and the cross-study cases with IoT. The following is the structure of the 
paper: Section 2 first describes the basic concepts, advantages, and disadvantages 
of convolutional neural networks. Then, the classical convolutional neural network 
is used as an entry point and discusses the successful cases of combined applica-
tion with IoT. Moreover, Section 3 focuses on application cases of graph convolu-
tional networks in IoT and semi-supervised classification. Finally, Section 4 states 
our conclusions.

2	 CONVOLUTIONAL	NEURAL	NETWORKS

2.1	 Outline

Convolutional neural networks (CNNs) are a deep learning model based on 
feed-forward artificial neural networks, and the core idea is to use convolutional 
operations to extract features from the input data. CNNs consist of multiple layers, 
where convolutional, activation, and pooling layers map the input data to the fea-
ture space [9]. The fully connected layer convolves the feature mapping to obtain a 
one-dimensional vector [10]. Finally, it is generally normalized by the softmax func-
tion to get the predicted probability of each kind of distribution. The convolutional 
layer extracts local features from the input image by convolutional computation, 
which captures information such as local textures, edges, etc., in the image [11]. 
The activation layer introduces nonlinear factors to make the network more expres-
sive and capable of more complex processing of the input data. The pooling layer, 
on the other hand, reduces the amount of computation and the risk of overfitting 
by decreasing the feature dimensions while retaining important feature informa-
tion. Finally, the fully connected layer connects the outputs of the previous layers 
and realizes the final classification task. CNNs have achieved remarkable success in 
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image recognition, natural language processing, etc., and have become one of the 
important research directions in deep learning. CNNs have the following advantages 
over traditional methods [12]: CNNs have a hierarchical feature representation and 
exponentially growing deep architecture representation; e.g., deep layers can extract 
richer semantic information than shallow layers.

2.2	 Classic	convolutional	neural	networks

A CNN [13] is a neural network specialized in processing data with a grid-like 
structure. It can also be described as a class of feed forward neural networks con-
taining convolutional computation and a deep structure.

It was not until 2012 that Krizhevsky et al. (2012) [14] proposed AlexNet, as 
shown in Figure 1, a deeply scaled CNN that received first place in the ImageNet 
Large Scale Visual Recognition Challenge, that researchers began to pay attention 
to CNNs. AlexNet’s innovations include the use of ReLU instead of the traditional 
saturated nonlinear function tanh, which reduces the computational complexity 
and improves the training speed; randomly discarding a portion of neurons by the 
dropout technique to improve the model’s robustness and reduce the overfitting of 
the fully connected layer; and increasing the training samples by image panning, 
horizontal mirroring, and grayscale transformation to reduce the overfitting.

Image data Convolutional layer Fully connected layer

Fig. 1. A simple representation of the architecture of AlexNet

In 2014, Szegedy et al. (2014) [15] proposed GoogleNet. It is a CNN with more than 
20 layers that employs convolutional operations with convolutional kernel sizes of 
1 × 1, 3 × 3, and 5 × 5 to improve computational resource utilization. Moreover, the 
model has fewer parameters. In the same year, Simonyan and Zisserman (2014) 
[16] explored the importance of depth for CNNs. They constructed VGGNet by add-
ing convolutional layers with 3 × 3 convolutional kernels to deepen the network. 
The performance is significantly improved when the number of layers reaches 
between 16 and 19. The VGG model replaces a single large convolutional kernel with 
multiple layers of small convolutional kernels to reduce the number of parameters.

In 2015, He et al. (2016) [17] introduced the residual network (ResNet) to solve 
the gradient vanishing problem. They introduced a shortcut connection technique 
across layers of information input and summed them with convolutional results, as 
shown in Figure 2, ResNet has only one pooling layer, allowing the underlying net-
work to be fully trained and accuracy to increase significantly with depth. ResNet, 
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with a depth of 152 layers, won first place in LSVRC-15. The depth of ResNet even 
reaches 1000 layers and is validated in the CIFAR-10 dataset.

+

weight layer

ReLU

weight layer
identity

F(X) + X

ReLUF(X)

X

X

Fig. 2. Diagram of skip connection

The training of deep Convolutional Neural Networks (CNNs) poses challenges 
related to computational power, gradients, and activation functions [18, 19]. 
Additionally, the efficiency gains from adding convolutional layers are not signifi-
cant [20]. Image classification tasks benefit from deep networks, but issues such as 
occlusion and blurring remain to be addressed [21]. Further, for most deep learning 
based on single image dehazing methods, the CNNs used for extracting features can 
only capture local features [22].

2.3	 Newer	development	of	convolutional	neural	networks

Convolutional neural networks are used in recent food image detection methods 
because they can effectively learn advanced features from data [23].

To cope with the problem of poor performance of CNNs in handling nonlinear 
data and sensitivity to local minima of training errors, Ahmed et al. (2022) used the 
MobileNetV3 network to extract high-quality features from food images. To select 
the best subset of features, they used the Shapley additive pre-planning (SHAP) algo-
rithm, which effectively evaluates the prediction performance of different combina-
tions of attributes. Finally, they further improved the classification performance by 
employing the powerful generalization capabilities and nonlinear decision bounds 
of the kernel extreme learning machine (KELM).

Kernel extreme learning machine is a state-of-the-art classification method for 
dealing with linearly indistinguishable features with good generalization ability. 
However, it is highly complex when dealing with large-scale datasets and requires 
complex inner product matrix computations. In contrast, the authors chose an 
approach that can benefit from the parallel and distributed environment of cloud 
computing.

Their proposed new classifier, called the multi-column kernel extreme learn-
ing machine (MCKELM), utilizes a distributed cloud environment to solve the 
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dimensionality problem. In the food detection classification phase, MCKELM decom-
poses the network structure of KELM, uses an efficient neural network to extract 
reliable features, and utilizes SHAP values for feature selection to filter out irrelevant 
features. In addition, the visualization provided by Gradient Explainer highlights the 
image pixels and improves the interpretability of their proposed architecture. This 
approach performs better in terms of performance and interpretability than existing 
techniques.

Ben Atitallah et al. (2022) [24] proposed a new approach for detecting and 
multi-categorizing IoT malware by leveraging the power of deep migration learning. 
By utilizing pre-trained CNNs, including ResNet18, MobileNetV2, and DenseNet161, 
and employing ensemble strategies such as voting, stacking, and decision fusion, the 
proposed method improves detection accuracy without the need to create models 
from scratch. This approach capitalizes on the benefits of the deep TL methodology. 
They use an integrated learning strategy to fuse the outputs of the three CNN models 
mentioned above. The details of this integrated learning approach are exciting. It 
contains hard-voting, soft-voting, and stacking strategies that compensate each other 
for errors in classification results or reduce generalization errors. The MaleVis data-
set, consisting of more than 14,000 RGB images from 26 different series, including 
various malware types and one benign category, was subjected to a rigorous per-
formance evaluation that demonstrated the superiority of the methodology. A com-
parative analysis with recent research results on the same dataset further highlights 
the effectiveness of the proposed IoT malware detection and classification strategy.

Unconstrained by the traditional deep learning approach, where a complete 
model architecture contains only one CNN, Alabsi et al. (2023) [25] designed a com-
bination of two CNNs to detect IoT cyber-attacks. The core idea of this approach is 
to select the most informative features as inputs to the second newly constructed 
CNN by the first CNN, calculating the average activation of each feature mapping 
across all instances in the test dataset. The most informative features are selected by 
sorting the average number of activations in descending order and selecting the top 
k feature maps to identify the most informative feature maps as inputs to the newly 
constructed CNN. After experiments on the BoT-IoT 2020 dataset, it was confirmed 
that CNN-CNN has strong robustness and high accuracy.

The joint application of deep learning and IoT in analyzing and identifying poten-
tial malware attacks has also been successful. Conventional CNN-LSTM methods 
cannot provide sufficient useful features for classifiers. The novel CNN-LSTM pro-
posed by Akhtar and Feng (2022) [26] is innovative in that it combines the temporal 
and geographical interactions of the CNN-LSTM. Using the CNN-LSTM in the dataset 
experiments used for malware detection confirms that the CNN-LSTM has the high-
est accuracy by comparing the experimental data with decision trees, support vector 
machines, and LSTMs.

Convolutional neural networks are widely used in the field of biological image 
segmentation [27] and have also significantly improved the performance of semantic 
image segmentation [28]. However, the presence of feature extraction by CNNs may 
lead to the loss of contextual and spatial information. To overcome these problems 
of CNN for semantic image segmentation, Jiang et al. (2021) proposed a multilevel 
graph convolutional recurrent neural network (MGCRNN). This network combines 
CNN and graph neural networks (GNN) to fuse multilevel features. Building on the 
success of the GCRNN, the MGCRNN can obtain a holistic view of an image and con-
verge multilevel contextual and structural information. Experiments confirm that 
MGCRNN ensures no loss of spatial data and achieves flexible sensory field and 
structural feature learning capabilities.
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3	 GRAPH	CONVOLUTIONAL	NETWORKS

3.1	 Outline

A GCN is a method that enables deep learning of graph data [29, 30]. GCNs ana-
lyze nodes by combining the features of the nodes and their neighbors. The core 
idea of GCNs is to update a node’s features by aggregating the neighboring nodes’ 
information with the current node through a graph convolution operation. GCNs 
are generally used to process non-Euclidean data [31] to compensate for the lack 
of CNNs. From the perspective of convolutional methods, GCNs can be categorized 
into two types: spectral and null domains. Kipf and Welling (2016) [32] proposed 
spectral convolution, whereby the filter of the convolutional network is converted to 
the Fourier domain for processing along with the graph signal. Niepert et al. (2016) 
[33] proposed null-domain convolution, which constructs a hierarchy by connecting 
nodes in the graph in the spatial domain and then performs a convolution operation.

Suppose there is an undirected graph G. Denote the set of nodes by G, and 
G = {V, E, X}. E, X denotes the set of edges between nodes and the matrix of node 
features, respectively. If each node has a feature vector of dimension d, then X will 
be an n × d matrix, where n is the number of nodes.

The propagation formula for the improved GCNs is as follows:

 H AH Wl l l( ) ( ) ( )( ).� �1 �   (1)

where, H(l) represents the node features of l-th layer of GCN. σ denotes certain 
activation functions.

   A D AD�
� �
1

2

1

2ˆ ,  (2)

where A is a sparse matrix, and D is a diagonal matrix representing the degree of 
the nodes. Â is a node self-connected adjacency matrix, and

 ˆ .[ ]A A
ij

N N� � �  (3)

and

 ˆ ,A A I
N

� �  (4)

where IN are identity matrices, and A is an adjacency matrix [34]. W(l) is a learn-
able weight matrix.

The graph convolutional layer consists of two phases: feature aggregation and 
feature extraction [35, 36]. Feature aggregation controls the attributes of local neigh-
boring nodes to enhance similarity. Feature extraction follows feature aggregation 
and helps extract common features between neighboring nodes.

Before the improvement of Eq. 1,

   A D AD I
N

� �
� �
1

2

1

2ˆ ,  (5)

where, Â A= , the range of eigenvalues in the Eq. 5 was small. When this opera-
tor is applied multiple times in a deep neural network model, it may lead to unsta-
ble values, triggering the problem of exploding or vanishing gradients. To mitigate 
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this problem, Kipf and Welling (2016) redefined the matrix as shown in the follow-
ing equation,

 ˆ ,A A I
N

� �  (6)

and the sparse matrix A then changes as follows

   A D AD�
� �
1

2

1

2ˆ .  (7)

3.2	 Applications	in	the	Internet	of	Things

The GCNs have been widely applied and studied in the IoT field in recent years. 
The IoT generates heterogeneous data and complex relationships as a network con-
necting various physical devices and sensors. Traditional machine learning methods 
are often tricky to handle these data effectively. GCNs, as a deep learning method 
with the ability to handle graph-structured data, provide new ideas for data model-
ing and analysis in IoT.

Ma et al. (2023) [37] proposed an innovative approach for addressing the chal-
lenges posed by the demands of IoT applications in shared networks. Combining 
IoT devices’ topology and node features achieves more accurate and efficient node 
classification. Specifically, the method uses GCN to capture the relationship between 
topology and node features and utilizes this information to update the embedded 
representation of the nodes. The GCN-VNE method efficiently embeds the virtual 
network into the physical infrastructure. The policy network in the GCN-VNE con-
sists of two hidden layers of GCNs. In each layer, the adjacency matrix A stays static 
while the input matrix X and the convolution kernel matrix W change dynamically. 
Each embedding result is randomly labeled, and all virtual nodes are manually 
defined as an entity with an n-dimensional label vector y, where n equals the num-
ber of nodes in the underlying network. The method combines the advantages of 
graph convolutional networks and virtual network embedding to classify and rec-
ognize IoT devices effectively. Through many experiments, they demonstrated that 
the GCN-VNE algorithm performs well.

The application of GCNs in IoT can be categorized into several aspects. First, GCNs 
perform well in the task of node classification in IoT. By taking the devices, sen-
sors, etc., in IoT as nodes of the graph and constructing the connection relationship 
between the devices as edges of the graph, GCNs can effectively learn the interac-
tions and relationships between the nodes to realize the classification and recogni-
tion of the nodes. For example, traffic flow prediction [38], transportation trajectory 
prediction [39], environmental monitoring [40], and other fields in smart cities can 
use GCNs to classify nodes and achieve accurate forecasts and analyses.

The method proposed by Li and Li (2021) [41] introduces a GPFS system to 
predict human poses in smart homes through graph modeling effectively. Unlike 
traditional methods, the system adopts an online learning technique that allows 
real-time updating of the prediction model to improve the accuracy and usefulness 
of the prediction gradually. The GPFS system has the advantage of real-time learn-
ing by utilizing continuously accumulated pose data, and it has achieved remark-
able results in smart home environments. The system can capture the complex 
relationship between human posture and the environment by constructing a graph 
structure and connecting various data points to achieve more accurate predictions. 
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Online learning techniques further enhance the system’s adaptability, allowing it to 
continuously adjust the prediction model to accommodate changes in the environ-
ment and data. Their approach has significant potential to improve the accuracy and 
utility of predictions and positively impact the development of the smart home and 
human behavior analytics fields.

Graph neural networks also play an essential role in anomalous alert identifica-
tion in cyber security. Intrusion detection systems (IDSs) check for intrusions and 
try to generate a series of alerts [42]. An alert graph is constructed by using alerts 
as nodes, and the presence of edges is measured by the similarity of the alerts [42]. 
Alert-GCN [42] performs node classification in the alert graph, thus enabling attack 
scenario discovery. Alert-GCN outperforms traditional models because it can bet-
ter capture the implicit relationships between different alerts from the alert graph, 
which outperforms traditional models. However, their shallower models fail to over-
come the over-smoothing problem of graph neural networks.

Graph neural networks can also be used for recommend graph data in the Internet 
of Vehicles (IoV). Jiang et al. (2022) [43] further explored the relationship between the 
two entities and other potential interests of users by constructing a graph structure 
and generating a knowledge graph with users and vehicles as entities. They studied 
recommendation techniques based on knowledge graph-KGCN using different aggre-
gators to collect neighbourhood information. The aggregation is repeated H times for 
the obtained user-vehicle entity pairs in a sensory field of size H. The aggregation is 
done in the same way for the user-vehicle entity pairs. The features of each entity in the 
neighbourhood are computed once after each of the above processes. Next, the features 
obtained by aggregating H times are aggregated with themselves to get a feature repre-
sentation for the next iteration. Their method performs better compared to traditional 
methods. However, their improved method requires a larger dataset and higher cost.

Further, GCNs are also applied in intrusion detection tasks for the IoT. The core idea 
of the NIDS approach, flow topology-based graph convolutional network (FT-GCN), 
proposed by Deng et al. (2023) [44], is to learn combinatorial representations from 
the topological and statistical features of the flow and provide classification results 
to determine whether the flow is malicious or not. They designed node-level spatial 
attention (NLS), an approach inspired by the squeeze and excitation network [45]. 
The attention mechanism can be further applied to non-Euclidean structured data. 
Different aspects of the data are used as nodes in the graph. These nodes can be rep-
resented as feature vectors, meaning that attention can also be applied to domains 
using graph-structured data [46]. During an NLS run, the input feature graph X first 
undergoes global average pooling, which can express information about the global 
sensory field. The above process is shown in the Eq. 8,

 Z avgpool
N

X
i

N

i
�

�

�
�
�

�

�
�
�

�

�

�1
0

1

,  (8)

where avgpool refers to the global average pooling. After that, the first fully con-
nected layer reduces the feature map’s size and is activated using the ReLU function. 
Then, the feature map undergoes a second fully connected layer for upscaling and is 
activated using the sigmoid function. The above process is shown in the Eq. 9,

 S W W Z� �� ��� ��� �
2 1

( ) ,  (9)

where S refers to the feature map obtained by the attention mechanism. And, W1, 
W2 refer to the weights of the first and second fully connected layers.
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Finally, the feature map weight matrix S obtained from the above process is mul-
tiplied by the matrix of the original feature map X, to get the output X̂  of the node-
level spatial attention.

 ˆ .X S X� �  (10)

Input X̂  to the topologically adaptive graphic convolutional network (TAGCN) and 
use it to feature learning. Experiments on three datasets show that FT-GCN has high 
detection accuracy.

3.3	 Commonly	used	citation	network	datasets

CiteSeer, CORA, PubMed [47, 48], and BlogCatalog [49] are datasets commonly 
used for GCN semi-supervised node classification. The first three datasets above con-
tain sparse bag-of-words feature vectors for each document and a list of citation links 
between documents [32]. The following is a description of these datasets (Table 1):

Table 1. Description of the three common datasets

Dataset Number of Nodes Dimension of 
Node Features Classes of Nodes Number of Edges

CORA 2708 1433 7 5429

CiteSeer 3312 3703 6 4732

PubMed 19717 500 3 44338

BlogCatalog 5196 8189 6 343486

The CORA dataset has a total of 2708 sample points, each of which is a scientific 
paper, all categorized into seven classes. A 1433-dimensional word vector represents 
each paper, so each sample point has 1433 features. Each paper cites or is cited by at 
least one other paper. If the sample points are viewed as points in a graph, this is a 
connected graph with no isolated points.

The CiteSeer dataset contains 3312 scientific publications in six categories. The 
citation network consists of 4732 edges. Each publication in the dataset is described 
by a 0/1-valued word vector that indicates whether the corresponding word exists 
in the dictionary. The dictionary contains 3703 unique words.

The PubMed dataset contains 19717 nodes and 44338 edges organized into three 
categories. A 500-dimensional feature descriptor represents each node and edge.

The BlogCatalog dataset is a dataset that deals with social networks and user 
behavior, with a wide range of social network analysis and community discovery 
applications. For studying social network structure, user interests, and community 
characteristics, BlogCatalog provides researchers with a rich data resource.

3.4	 Application	to	semi-supervised	classification

Wang et al. (2020) [50] noted that the success of GCNs is partly attributed to the fact 
that they provide a fusion strategy of topology and node features to learn node rep-
resentations. They proposed adaptive multi-channel graph convolutional networks 
(AM-GCN). The core idea of the model is to simultaneously extract special embeddings 
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and common embeddings from node features, topology, and their combinations and 
use the attention mechanism to learn the adaptive fusion weights of the embeddings. 
The advantages of AM-GCN include the following: the AM-GCN performs graph con-
volution operations on topology and feature space and combines with the attention 
mechanism so that the different information can be adequately fused; AM-GCN 
extracts the most relevant information from node features and topology and per-
forms challenging classification tasks well. Compared with traditional GCNs, the 
main advantage of AM-GCN is its adaptive multi-channel learning ability, i.e., it prop-
agates the node features in the topology space and the feature space and adaptively 
extracts and fuses the relevant information in these two spaces. Specifically, the core 
framework of AM-GCN is divided into two main parts: the construction of the feature 
graph and the propagation process of GCN. First, for the construction of the feature 
graph, AM-GCN takes the k-nearest neighbor graph of the nodes as the structure of 
the feature graph and uses a shared parameter strategy to design the co-convolution 
module to extract the embeddings that are shared on both the feature graph and the 
topology graph. This approach capitalizes on the similarity between features and 
the similarity inferred from the topology and can adaptively fuse this information. 
Second, during GCN propagation, AM-GCN allows node features to propagate not 
only in topological space but also in feature space. In this way, each node can update 
its representation according to its features and topology. In addition, AM-GCN intro-
duces a difference constraint to ensure independence between embeddings extracted 
in the two spaces. Because of the adaptive multi-channel propagation and the dif-
ference constraint, AM-GCN can achieve excellent performance in semi-supervised 
node classification tasks. It can fully utilize the data’s topological information and 
node features and adaptively fuse them to derive more accurate classification results. 
AM-GCN is proven to perform well on multiple datasets.

Heidari and Iosifidis (2021) [51] found that existing methods employ a user-defined 
network structure to obtain node embeddings by experimenting with a fixed num-
ber of layers and neurons per layer using a hierarchical propagation rule. They 
designed an automated process to define the architecture of graph-convolutional 
networks for solving specific problems, as shown in Figure 3, which can help reduce 
the cost of manually designing model structures.

Graph Convolution

Activation function: ReLU

1st block

layer l
layer l + 1

2nd block

Last block

Fig. 3. The chart is an example of a novel GC layer design scheme for PGCN. In this network architecture, 
graph convolutional feature aggregation occurs for each existing block. Each time, it accepts the graph 

characterization information from the output of all the pre-existing blocks in the previous layer
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They proposed progressive graph convolutional networks (PGCN), a type of GCN 
that gradually increases each layer’s size and hence the entire network’s size. PGCN 
has a compact number of parameters and good performance. It also makes the GCN 
topology guaranteed to converge to a (local) minimum, which helps improve perfor-
mance. Their asymptotic learning approach can be summarized as follows: Before 
stopping the fine-tuning optimization, each layer is trained with at least one block, 
and the end of learning at each layer is marked by the failure of the training on the 
next block to achieve better results. When the next layer does not achieve better 
results, the model stops fine-tuning the optimization, removes this last layer, and 
stops growing the network’s topology. Predictions are made directly with the saved 
output layer weights of the best results. The design concept of Progressive Graph 
Convolutional Networks exploits the features of graph structure and the challenges 
of semi-supervised learning to improve the performance of semi-supervised node 
classification through a novel graph convolutional network structure and train-
ing strategy. This strategy enables the model to utilize unlabeled data better and 
improves generalization performance and stability. Therefore, progressive graph 
convolutional networks are a promising semi-supervised node classification method. 
Although PGCN performs better, the training process has to deal with large-scale 
graphs with millions of nodes and edges, which requires a large amount of memory.

4	 CONCLUSION

This paper focuses on applying CNNs and GCNs to IoT and semi-supervised 
classification. First, the basic concepts, advantages, and disadvantages of CNNs are 
described. Then, the classical CNNs are used as an entry point, and the successful 
cases of combined application with IoT are discussed. The subsequent section focuses 
on the application cases of GCNs in IoT and semi-supervised classification. In the 
case of IoT, GCNs have been developed in several domain branches. Topological map 
studies are significant in facilitating the development of joint applications. As for the 
semi-supervised classification task, relevant cases have been studied and analyzed, 
highlighting the importance of improving the topology of traditional networks and 
utilizing the topology to train models better. The combination of GCNs with IoT has 
potential for development, and it is believed that GCNs can achieve better results in 
semi-supervised classification tasks as well. In the future, we will pay more attention 
to the joint application of deep learning and IoT. And we will continue to summarize 
our research on its development.

5	 REFERENCES

 [1] B. Yang, Y. Kang, L. Zhang, and H. Li, “GGAC: Multi-relational image gated GCN with atten-
tion convolutional binary neural tree for identifying disease with chest X-rays,” Pattern 
Recognition, vol. 120, p. 108113, 2021. https://doi.org/10.1016/j.patcog.2021.108113

 [2] Y. R. Wu, X. Y. Zhang, Y. Xiao, and J. Feng, “Attention neural network for water image clas-
sification under IoT environment,” Applied Sciences, vol. 10, no. 3, p. 909, 2020. https://
doi.org/10.3390/app10030909

 [3] Q. H. Wang, J. W. Liu, and L. L. Zhang, “Study on the classification of K-nearest neighbor 
algorithm,” Journal of Xi’an Technological University.

https://online-journals.org/index.php/iTDAF
https://doi.org/10.1016/j.patcog.2021.108113
https://doi.org/10.3390/app10030909
https://doi.org/10.3390/app10030909


iTDAF | Vol. 1 No. 3 (2023) IETI Transactions on Data Analysis and Forecasting (iTDAF) 15

A Review of Joint Applications of IoT and Deep Learning

 [4] J. Cao, K. Zhang, M. Luo, C. Yin, and X. Lai, “Extreme learning machine and adaptive 
sparse representation for image classification,” Neural Networks, vol. 81, pp. 91–102, 
2016. https://doi.org/10.1016/j.neunet.2016.06.001

 [5] K. Hirose, K. Miura, and A. Koie, “Hierarchical clustered multiclass discriminant anal-
ysis via cross-validation,” Computational Statistics & Data Analysis, vol. 178, p. 107613,  
2023. https://doi.org/10.1016/j.csda.2022.107613

 [6] L. Du et al., “Development and external validation of a machine learning-based predic-
tion model for the cancer-related fatigue diagnostic screening in adult cancer patients: 
A cross-sectional study in China,” Supportive Care in Cancer, vol. 31, no. 2, p. 106, 2023. 
https://doi.org/10.1007/s00520-022-07570-w

 [7] H. Lin, Q. Xue, J. Feng, and D. Bai, “Internet of Things intrusion detection model and 
algorithm based on cloud computing and multi-feature extraction extreme learning 
machine,” Digital Communications and Networks, vol. 9, no. 1, pp. 111–124, 2023. https://
doi.org/10.1016/j.dcan.2022.09.021

 [8] Y. Wang, J. Wang, H. Jin, and I. S. Ansari, “Network intrusion detection method based 
on improved CNN in Internet of Things environment,” Mobile Information Systems,  
vol. 2022, p. 10, 2022. https://doi.org/10.1155/2022/3850582

 [9] Y.-D. Zhang, “Twelve-layer deep convolutional neural network with stochastic pool-
ing for tea category classification on GPU platform,” Multimedia Tools and Applications, 
vol. 77, no. 17, pp. 22821–22839, 2018. https://doi.org/10.1007/s11042-018-5765-3

 [10] Z. Zhu, S. Wang, and Y. Zhang, “A survey of convolutional neural network in breast can-
cer,” Computer Modeling in Engineering & Sciences, vol. 136, no. 3, pp. 2127–2172, 2023. 
https://doi.org/10.32604/cmes.2023.025484

 [11] K. Muhammad, “Image based fruit category classification by 13-layer deep convolu-
tional neural network and data augmentation,” Multimedia Tools and Applications, 
vol. 78, no. 3, pp. 3613–3632, 2019. https://doi.org/10.1007/s11042-017-5243-3

 [12] C. M. He, H. Y. Kang, T. Yao, and X. R. Li, “An effective classifier based on convolutional 
neural network and regularized extreme learning machine,” Mathematical Biosciences 
and Engineering, vol. 16, no. 6, pp. 8309–8321, 2019. https://doi.org/10.3934/mbe.2019420

 [13] Y. LeCun et al., “Backpropagation applied to handwritten zip code recognition,” Neural 
Computation, vol. 1, no. 4, pp. 541–551, 1989. https://doi.org/10.1162/neco.1989.1.4.541

 [14] A. Krizhevsky, I. Sutskever, and G. Hinton, “ImageNet classification with deep convo-
lutional neural networks,” Advances in Neural Information Processing Systems, vol. 25, 
no. 2, 2012.

 [15] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, and A. Rabinovich, “Going deeper with convolu-
tions,” IEEE Computer Society, pp. 1–9, 2015. https://doi.org/10.1109/CVPR.2015.7298594

 [16] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image 
recognition,” Computer Science, 2014.

 [17] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in 
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 
2016, pp. 770–778. https://doi.org/10.1109/CVPR.2016.90

 [18] S.-H. Wang, “Unilateral sensorineural hearing loss identification based on double-density 
dual-tree complex wavelet transform and multinomial logistic regression,” Integrated 
Computer-Aided Engineering, vol. 26, pp. 411–426, 2019. https://doi.org/10.3233/
ICA-190605

 [19] A. K. Sangaiah, “Alcoholism identification via convolutional neural network based on 
parametric ReLU, dropout, and batch normalization,” Neural Computing and Applications, 
vol. 32, pp. 665–680, 2020. https://doi.org/10.1007/s00521-018-3924-0

 [20] J. Wang, S. Satapathy, S. Wang, and Y. Zhang, “LCCNN: A lightweight customized 
CNN-based distance education app for COVID-19 recognition,” Mobile Networks and 
Applications, 2023. https://doi.org/10.1007/s11036-023-02185-9

https://online-journals.org/index.php/iTDAF
https://doi.org/10.1016/j.neunet.2016.06.001
https://doi.org/10.1016/j.csda.2022.107613
https://doi.org/10.1007/s00520-022-07570-w
https://doi.org/10.1016/j.dcan.2022.09.021
https://doi.org/10.1016/j.dcan.2022.09.021
https://doi.org/10.1155/2022/3850582
https://doi.org/10.1007/s11042-018-5765-3
https://doi.org/10.32604/cmes.2023.025484
https://doi.org/10.1007/s11042-017-5243-3
https://doi.org/10.3934/mbe.2019420
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.3233/ICA-190605
https://doi.org/10.3233/ICA-190605
https://doi.org/10.1007/s00521-018-3924-0
https://doi.org/10.1007/s11036-023-02185-9


 16 IETI Transactions on Data Analysis and Forecasting (iTDAF) iTDAF | Vol. 1 No. 3 (2023)

Tang and Wang

 [21] R. N. Wessner, R. Frozza, D. Duarte da Silva Bagatini, and R. F. Molz, “Recognition of 
weeds in corn crops: System with convolutional neural networks,” Journal of Agriculture 
and Food Research, vol. 14, p. 100669, 2023. https://doi.org/10.1016/j.jafr.2023.100669

 [22] B. Hu, Z. Z. Yue, M. C. Gu, Y. Zhang, Z. Xu, and J. H. Li, “Hazy removal via graph con-
volutional with attention network,” Journal of Signal Processing Systems for Signal 
Image and Video Technology, vol. 95, no. 4, pp. 517–527, 2023. https://doi.org/10.1007/
s11265-023-01863-x

 [23] G. Ahmed, T. Chu, and K. Loo, “Novel multicolumn kernel extreme learning machine for 
food detection via optimal features from CNN,” arXiv preprint arXiv:2205.07348, 2022.

 [24] S. Ben Atitallah, M. Driss, and I. Almomani, “A novel detection and multi-classification 
approach for IoT-malware using random forest voting of fine-tuning convolutional neu-
ral networks,” Sensors, vol. 22, no. 11, p. 4302, 2022. https://doi.org/10.3390/s22114302

 [25] B. A. Alabsi, M. Anbar, and S. D. A. Rihan, “CNN-CNN: Dual convolutional neural network 
approach for feature selection and attack detection on Internet of Things networks,” 
Sensors, vol. 23, no. 14, p. 6507, 2023. https://doi.org/10.3390/s23146507

 [26] M. S. Akhtar and T. Feng, “Detection of malware by deep learning as CNN-LSTM machine 
learning techniques in real time,” Symmetry, vol. 14, no. 11, p. 2308, 2022. https://doi.
org/10.3390/sym14112308

 [27] H. Xue, Z. Hu, S. Wang, and Y. Zhang, “A survey on deep learning in COVID-19 diagnosis,” 
Journal of Imaging, vol. 9, p. 1, 2023. https://doi.org/10.3390/jimaging9010001

 [28] D. C. Jiang, H. Qu, J. H. Zhao, J. L. Zhao, and W. Liang, “Multi-level graph convolutional 
recurrent neural network for semantic image segmentation,” Telecommunication 
Systems, vol. 77, no. 3, pp. 563–576, 2021. https://doi.org/10.1007/s11235-021-00769-y

 [29] S.-H. Wang, “Covid-19 classification by FGCNet with deep feature fusion from graph 
convolutional network and convolutional neural network,” Information Fusion, vol. 67, 
pp. 208–229, 2021. https://doi.org/10.1016/j.inffus.2020.10.004

 [30] D. S. Guttery, “Improved breast cancer classification through combining graph con-
volutional network and convolutional neural network,” Information Processing and 
Management, vol. 58, p. 2, 2021. https://doi.org/10.1016/j.ipm.2020.102439

 [31] X. Z. Xu, X. Y. Zhao, M. Wei, and Z. N. Li, “A comprehensive review of graph convo-
lutional networks: Approaches and applications,” Electronic Research Archive, vol. 31, 
no. 7, pp. 4185–4215, 2023. https://doi.org/10.3934/era.2023213

 [32] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional net-
works,” in Proceedings of the 5th International Conference on Learning Representations 
(ICLR), ICLR, 2016.

 [33] M. Niepert, M. Ahmed, and K. Kutzkov, “Learning convolutional neural networks for 
graphs,” JMLR.org, 2016.

 [34] A. Apicella, F. Isgrò, A. Pollastro, and R. Prevete, “Adaptive filters in graph convolutional 
neural networks,” Pattern Recognition, vol. 144, p. 109867, 2023. https://doi.org/10.1016/ 
j.patcog.2023.109867

 [35] B. Y. Chen, Y. Ma, J. Wang, T. Jia, X. Liu, and W. H. K. Lam, “Graph convolutional networks 
with learnable spatial weightings for traffic forecasting applications,” Transportmetrica 
A Transport Science, 2023. https://doi.org/10.1080/23249935.2023.2239377

 [36] D. Li, W. Zhao, J. Hu, S. Zhao, and S. Liu, “A long-term water quality prediction model for 
marine ranch based on time-graph convolutional neural network,” Ecol. Indic., vol. 154, 
p. 110782, 2023. https://doi.org/10.1016/j.ecolind.2023.110782

 [37] S. H. Ma et al., “Graph convolutional network aided virtual network embedding for 
Internet of Thing,” IEEE Transactions on Network Science and Engineering, vol. 10, no. 1, 
pp. 265–274, 2023. https://doi.org/10.1109/TNSE.2022.3207205

 [38] F. Liang, C. Qian, W. Yu, D. Griffith, and N. Golmie, “Survey of graph neural networks 
and applications,” Wireless Communications & Mobile Computing, vol. 2022, p. 28, 2022. 
https://doi.org/10.1155/2022/9261537

https://online-journals.org/index.php/iTDAF
https://doi.org/10.1016/j.jafr.2023.100669
https://doi.org/10.1007/s11265-023-01863-x
https://doi.org/10.1007/s11265-023-01863-x
https://doi.org/10.3390/s22114302
https://doi.org/10.3390/s23146507
https://doi.org/10.3390/sym14112308
https://doi.org/10.3390/sym14112308
https://doi.org/10.3390/jimaging9010001
https://doi.org/10.1007/s11235-021-00769-y
https://doi.org/10.1016/j.inffus.2020.10.004
https://doi.org/10.1016/j.ipm.2020.102439
https://doi.org/10.3934/era.2023213
https://doi.org/10.1016/j.patcog.2023.109867
https://doi.org/10.1016/j.patcog.2023.109867
https://doi.org/10.1080/23249935.2023.2239377
https://doi.org/10.1016/j.ecolind.2023.110782
https://doi.org/10.1109/TNSE.2022.3207205
https://doi.org/10.1155/2022/9261537


iTDAF | Vol. 1 No. 3 (2023) IETI Transactions on Data Analysis and Forecasting (iTDAF) 17

A Review of Joint Applications of IoT and Deep Learning

 [39] R. W. Liu et al., “STMGCN: Mobile edge computing-empowered vessel trajectory pre-
diction using spatio-temporal multigraph convolutional network,” IEEE Transactions 
on Industrial Informatics, vol. 18, no. 11, pp. 7977–7987, 2022. https://doi.org/10.1109/
TII.2022.3165886

 [40] C. H. Yang, H. H. Shuai, C. Y. Shen, and M. S. Chen, “Learning to solve task-optimized group 
search for social Internet of Things,” IEEE Transactions on Knowledge and Data Engineering, 
vol. 34, no. 11, pp. 5429–5445, 2022. https://doi.org/10.1109/TKDE.2021.3057361

 [41] X. Li and D. W. Li, “GPFS: A graph-based human pose forecasting system for smart home 
with online learning,” ACM Transactions on Sensor Networks, vol. 17, no. 3, 2021. https://
doi.org/10.1145/3460199

 [42] Q. M. Cheng, C. M. Wu, and S. Y. Zhou, “Discovering attack scenarios via intrusion alert 
correlation using graph convolutional networks,” IEEE Communications Letters, vol. 25, 
no. 5, pp. 1564–1567, 2021. https://doi.org/10.1109/LCOMM.2020.3048995

 [43] X. L. Jiang, Y. Fu, and C. C. Dong, “Recommendation method for fusion of knowledge 
graph convolutional network,” EURASIP Journal on Advances in Signal Processing, 
vol. 2022, no. 1, 2022. https://doi.org/10.1186/s13634-022-00854-7

 [44] X. H. Deng, J. C. Zhu, X. J. Pei, L. Zhang, Z. Ling, and K. P. Xue, “Flow topology-based 
graph convolutional network for intrusion detection in label-limited IoT networks,” 
IEEE Transactions on Network and Service Management, vol. 20, no. 1, pp. 684–696, 2023. 
https://doi.org/10.1109/TNSM.2022.3213807

 [45] J. Hu, L. Shen, S. Albanie, G. Sun, and E. Wu, “Squeeze-and-excitation networks,” IEEE 
Transactions on Pattern Analysis and Machine Intelligence, vol. 42, no. 8, pp. 2011–2023, 
2020. https://doi.org/10.1109/TPAMI.2019.2913372

 [46] G. Brauwers and F. Frasincar, “A general survey on attention mechanisms in deep learn-
ing,” IEEE Transactions on Knowledge and Data Engineering, vol. 35, no. 4, pp. 3279–3298, 
2023. https://doi.org/10.1109/TKDE.2021.3126456

 [47] Prithviraj et al., “Collective classification in network data,” Ai Magazine, vol. 29, no. 3,  
p. 93, 2008. https://doi.org/10.1609/aimag.v29i3.2157

 [48] B. Jiang, Z. Zhang, D. Lin, J. Tang, and B. Luo, “Semi-supervised learning with graph 
learning-convolutional networks,” in 2019 IEEE/CVF Conference on Computer Vision and 
Pattern Recognition (CVPR), 2020. https://doi.org/10.1109/CVPR.2019.01157

 [49] Z. Meng, S. Liang, H. Bao, and X. Zhang, “Co-embedding attributed networks,” in 
Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining, 
Melbourne VIC, Australia, 2019. https://doi.org/10.1145/3289600.3291015

 [50] X. Wang, M. Zhu, D. Bo, P. Cui, C. Shi, and J. Pei, “AM-GCN: Adaptive multi-channel graph 
convolutional networks,” in Proceedings of the 26th ACM SIGKDD International Conference 
on Knowledge Discovery & Data Mining, 2020. https://doi.org/10.1145/3394486.3403177

 [51] N. Heidari and A. Iosifidis, “Progressive graph convolutional networks for semi- 
supervised node classification,” IEEE Access, vol. 9, pp. 81957–81968, 2021. https://doi.
org/10.1109/ACCESS.2021.3085905

6	 AUTHORS

Wenhao Tang is a Computer Science and Technology student at the Henan 
Polytechnic University (E-mail: wenhaotang@home.hpu.edu.cn).

Jiaji Wang is presently a Computer Science M.Phil., student at the University of 
Leicester (E-mail: jw933@le.ac.uk).

https://online-journals.org/index.php/iTDAF
https://doi.org/10.1109/TII.2022.3165886
https://doi.org/10.1109/TII.2022.3165886
https://doi.org/10.1109/TKDE.2021.3057361
https://doi.org/10.1145/3460199
https://doi.org/10.1145/3460199
https://doi.org/10.1109/LCOMM.2020.3048995
https://doi.org/10.1186/s13634-022-00854-7
https://doi.org/10.1109/TNSM.2022.3213807
https://doi.org/10.1109/TPAMI.2019.2913372
https://doi.org/10.1109/TKDE.2021.3126456
https://doi.org/10.1609/aimag.v29i3.2157
https://doi.org/10.1109/CVPR.2019.01157
https://doi.org/10.1145/3289600.3291015
https://doi.org/10.1145/3394486.3403177
https://doi.org/10.1109/ACCESS.2021.3085905
https://doi.org/10.1109/ACCESS.2021.3085905
mailto:wenhaotang@home.hpu.edu.cn
mailto:jw933@le.ac.uk

