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PAPER

Quantitative Estimation of Urban PM2.5 Pollution 
Baseline and Meteorological Resource Endowment 
Using Machine Learning in Chinese Yangtze River 
Economic Belt

ABSTRACT
Considering the influence of baseline values, meteorological conditions, and human activ-
ities on PM2.5, quantifying them will facilitate the classification, control, and management 
of pollution. The machine learning model explained the PM2.5-meteorological nonlinear 
relationship between PM2.5 and meteorological factors in each city across the Yangtze River 
Economic Belt, China. Meteorological resource endowments (MRE) are used to quantify the 
variation on PM2.5 concentration caused by meteorological conditions. Contamination base-
line (CB) is used to characterize the lowest limit of anthropogenic impact in PM2.5 contam-
ination without meteorological interference. According to the values of MRE and CB, cities 
in the Yangtze River economic belt can be divided into four categories (Q1-4). The average 
value of MRE is −0.41 µg/m3. The average value of CB is 34.05 µg/m3, which is lower than the 
Chinese Grade II standard (GB 3095-2012). The additional emissions by humans resulted in 
an increase of 7 µg/m3 in concentration, while the meteorological factors led to a decrease of 
−0.41 µg/m3. In terms of city classification, Q1 is concentrated in the midstream, and PM2.5 
is the most challenging pollutant to control. Q2 is concentrated downstream, with relatively 
high PM2.5 emissions but favorable meteorological conditions. Q3 is concentrated upstream, 
and there is surplus environmental capacity even with limited meteorological conditions. 
Cites in Q4 have the most suitable development potential and exhibit a discrete spatial dis-
tribution. The research distinguished various categories of pollution and provided insights 
into the different characteristics of pollution around the Yangtze River Economic Belt. This 
information has helped the government classify cities and implement specific policies based 
on their individual situations.
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1	 INTRODUCTION

PM2.5 is one of the major pollutants in the atmosphere and already poses signifi-
cant health risks to the population [1]. Especially in developing countries such as China, 
PM2.5 causes millions of deaths and results in economic losses due to health-related 
expenses [2]. In recent years, due to the successful implementation of China’s air pol-
lution policy, the overall concentration of PM2.5 has decreased. The scope of pollution 
has shifted from large to specific areas. Therefore, regional-graded prevention and 
control plans for China’s atmosphere have been proposed. For example, the “2 + 26” 
cities coordinated their management plans in the Beijing-Tianjin-Hebei urban agglom-
eration [3]. The measure will address persistent PM2.5 pollution at the regional level.

Before implementing graded management measures for PM2.5 in a specific 
region, it is necessary to classify the cities within that region. The classification 
is generally based on the concentration and impact of natural and human activ-
ities. Meteorology is an important natural factor considered to have a significant 
influence on the trend of PM2.5 concentrations, exhibiting strong spatial-temporal 
heterogeneity [4]. In some studies, the meteorological factor accounted for 10% 
of the total concentration and even reached 50% in the most polluted cities [5, 6]. 
Therefore, there is an urgent need for a relatively convenient method to eliminate 
the meteorological impact and establish the true emission trend of PM2.5. Weather 
normalization (WN) is a comprehensive algorithm based on machine learning [7–9]. 
It effectively explains the relationship between PM2.5 and meteorological condi-
tions and removes the meteorological component [10–12]. Meteorological resource 
endowment (MRE) was used to quantify the specific concentrations of PM2.5 influ-
enced by meteorological factors. It can be understood as the difference in PM2.5 
concentration between the observed values (OV) and the predicted values (PV) by 
weather normalization.

The anthropogenic emission of PM2.5 can be analyzed by the concentration value 
after eliminating the influence of meteorological factors. The contamination baseline 
(CB) is characterized as the lowest limit of long-term anthropogenic impact on soil 
and atmospheric contamination [13–15]. The cumulative frequency curve method is 
the most commonly used approach for determining CB. This method can determine 
the baseline value of almost any substance [16]. In this paper, CB refers to the value 
of PM2.5 concentrations in each city, taking into account long-term human activities 
and meteorological conditions. Therefore, integrating the PV using the cumulative 
frequency method would yield CB [17]. After analyzing the two impacts of PM2.5, 
cities in a region will be divided into multiple categories, representing the different 
combined effects of anthropogenic emissions and meteorological conditions. These 
classifications provide a reliable data basis for regional grade management.

The Yangtze River Economic Belt is a significant national strategic development 
region in China, with a population and gross domestic product (GDP) that exceed 
40% of the country’s total. Spanning three major regions in East and West China, 
there are significant differences in meteorological resource endowments (MRE) 
and urban development levels among various cities [18]. This paper confirmed the 
presence of CB and MRE in each city located around the Yangtze River Economic 
Belt. Based on the two indicators mentioned above, cities along the Yangtze River 
Economic Belt are classified into four categories. This classification method has been 
practiced in the literature [19]. In addition to supporting government management, 
the resulting dataset can play an important role in studying the relationship between 
environment and health, weather and pollution, and environmental inequalities in 
different cities.
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2	 MATERIALS AND METHODS

2.1	 Research area and data sources

The Yangtze River Economic Belt involves nine provincial administrative 
units, namely Jiangsu, Zhejiang, Anhui, Jiangxi, Hunan, Hubei, Sichuan, Yunnan, 
and Guizhou, as well as Shanghai and Chongqing (see Figure 1). It also includes  
130 prefecture-level administrative regions, which consist of prefecture-level cities, 
regions, and autonomous regions. Based on their geographical locations, they can be 
divided into three urban agglomerations in the upstream, midstream, and downstream 
areas. After excluding the missing data values, 125 cities participated in this study.

Fig. 1. The location of division of the Yangtze River Economic Belt in China and the up, mid and 
down streams

Daily PM2.5 data in various prefecture-level cities is provided by the Ministry of 
Ecology and Environment of China (http://www.mee.gov.cn/). Daily meteorological 
data were extracted from the China National Meteorological Administration website 
(http://www.cma.gov.cn/). The input dataset is presented in Table 1. After removing 
anomalous and missing values, a total of 272,738 records were obtained for 125 cities 
with available data, including PM2.5 and meteorological indicators. The data covers a 
time period of 2191 days, from 2015 to 2020, with an average of 2182 records per city.

Table 1. The abbreviation and meaning of the inputting variables of WN

Abbreviation Meaning Unit

PM2.5 µg/m3

Day_julian Number of days in a year day

Weekday Number of days in a week day

Apm Air pressure Pa

Rhm Relative Humidity %

Rzm Daylight hours h

Tm Temperatures ℃

Wsm Wind speed m/s

Wdm Wind direction (1∼16 bearing numbers) –

Wsmax Maximum wind speed m/s

https://online-journals.org/index.php/iTDAF
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2.2	 Creation of weather normalization models (WN)

The basic structure of WN is a random forest in machine learning that can pre-
dict PM2.5 features based on input data from observed PM2.5 and meteorological 
conditions. Random forest (RF) is composed of a specific number of individual deci-
sion tree models. Each tree randomly extracts observations and samples its predic-
tion features. It then replaces the training dataset, randomly selects the prediction 
features to achieve the best split for each node, and finally obtains the predicted 
values [20]. Random forest only requires a small number of tuning parameters from 
the user [21]. Grange (2020) set the number of independent or explanatory variables 
used to grow a tree at three and the minimum node size at five. The user-adjustable 
parameter is the number of predicted features, which was set to 1000, following 
Mallet [22].

Weather normalization can predict the concentration of air pollutants at a spe-
cific measurement time point based on randomly selected meteorological condi-
tions. In the input dataset of WN, PM2.5 observations and various meteorological 
factors are located in the same table. WN would add temporal variables for each 
PM2.5 data. Temporal and meteorological data would be considered control vari-
ables. The dataset was added to a predictive RF model in order to analyze the trend 
of observed PM2.5 over a period of five years and gain insights into the forma-
tion pathways of PM2.5. RF models can derive nonlinear relationships between 
PM2.5 and control variables in this dataset. After that, WN would output the weath-
er-normalized levels of pollutants. For a specific day, the model randomly selects 
time variables and weather parameters from the predicted feature data subset for 
any day during the entire study period. Subsequently, they were inputted into the  
RF model to predict PM2.5 at that specific time point. The aforementioned behavior 
was repeated 1000 times, and the predictions were averaged to represent the “aver-
age” meteorological conditions. This average was then considered the weather- 
normalized trend [20]. In addition, WN can describe the relationship between 
air pollutants and predictive index characteristics, as well as the importance and 
partial dependency of each meteorological factor. WN is a collection of multiple 
computing processes that can be completed with just a few commands, making it 
widely applicable worldwide.

Weather normalization does not directly offer the ability to determine error or 
uncertainty estimates [12]. The input dataset will be divided into two parts: a train-
ing set (80%) and a test set (20%). The test set was used to verify whether the model 
was overfitting. It measured the difference between the predicted value and the 
actual PM2.5 using the variables in the test set [9]. The result is characterized by R2.

2.3	 Creation of MRE, CB and city classification

After obtaining daily PM2.5 PV data, the annual mean difference between the 
PM2.5 OV and PV, obtained by removing the fluctuating variation of meteorology, is 
referred to as MRE. The formula used to calculate the MRE is as follows:

	 MRE

OVi PVi

n

i

n

�
�

��
1

( )

	 (1)

Where “n” represents the total number of days involved in the calculation. 
Therefore, it is possible to calculate the MRE for a specific year or a span of 6 years 
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using a range of n. OVi and PVi denote the OV and PV on the i-th day. When the 
value of it is less than 0, MRE has a positive effect on reducing PM2.5 concentration. 
Conversely, when the value of MRE is greater than 0, it has a negative effect.

The cumulative frequency curve method is used for determining CB [23]. 
Referring to the calculation method [24, 25], we plotted the distribution curve of 
PM2.5 concentration. The X-axis represents the concentration, while the Y-axis 
represents the decimal coordinates of cumulative frequency. The regression coeffi-
cients of the curve, along with their significance levels, were utilized to determine 
the inflection points for the limit conditions. Below the inflection point, there is 
either the upper limit of background values or the lower limit of human activi-
ties. The baseline value is the mean value of the content of samples smaller than 
the inflection point. Since a certain concentration of PM2.5 is inevitably generated 
during human activities, the current study includes both naturally occurring PM2.5 
in each city and the minimum emissions generated from basic human activities. 
In this research, firstly, the daily PM2.5 PV for each city over a six-year period 
was arranged and segmented. The cumulative frequency of each segment was 
calculated. The interval with the highest regression coefficient of determination  
(R2) > 95% of the relative cumulative frequency curve was then selected [16]. The 
average value of all the recorded data within this interval was then calculated as the 
contamination baseline.

A two-dimensional space can be constructed using the MRE and CB of each city. 
The critical values of MRE and CB were used as the basis for space construction. The 
critical value of CB can be set at 35 μg/m3, which aligns with the Chinese Grade II stan-
dard (GB 3095-2012). Since there is no standard value for MRE and the average MRE 
of all cities over a six-year period is less than 0, we have taken the average value of 
MRE (-0.41 µg/m3) as the critical value. The MRE higher than the average value has 
a relatively poor effect on reducing PM2.5 concentration, while the MRE lower than 
the average value has a relatively good effect. According to the two-dimensional 
space, cities in the Yangtze River Economic Belt will be divided into four catego-
ries: Q1: CB > 35 µg/m3, MRE > -0.41 µg/m3; Q2: CB > 35 µg/m3, MRE > -0.41 µg/m3; Q3: 
CB > 35 µg/m3, MRE > -0.41 µg/m3; Q4: CB > 35µg/m3, MRE > -0.41 µg/m3. The four cat-
egories represent the combined effects of anthropogenic emissions and meteorolog-
ical conditions on urban PM2.5.

3	 RESULTS AND DISCUSSION

The R2-training set and R2-test set were used to evaluate the fit and overfitting of 
the WN model. The R2-training set ranged from 0.8 to 0.96, and the R2-test set ranged 
from 0.38 to 0.77. The R2-test set in the most cities is higher than 0.5 and shows no 
apparent correlation with the R2-training set. The relationship between PM2.5 and 
meteorological factors in most cities is well explained by the RF model. The mid-
stream cities had a relatively high degree of fit in both the training and test sets. In 
these cities, PM2.5 had obvious anthropogenic sources, and the changeable weather 
had a significant impact on aggregation and diffusion [11]. On the other hand, the 
locations of meteorological and PM2.5 monitoring stations may occasionally result 
in extreme values that can impact the outcomes of machine learning [12]. When cal-
culating CP, the selection of the confidence interval for cumulative frequency helps 
to further avoid the influence of outliers and ensure the availability of data.

The statistics of OV, PV, MRE, and CB are shown in Figure 2. In all cities, the PM2.5 
levels were lower than the OV in the winter and higher in the summer. However, the 
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winter values still remained slightly higher overall. The 6-year annual average value 
of PV is 41.05 µg/m3, and of MRE is -0.41 µg/m3. The average value of CB is 34.05 µg/m3. 
CB in 72 cities is lower than the Chinese Grade II standard (GB 3095-2012). The 
additional emissions by humans resulted in an increase of 7µg/m3 in concentra-
tion, while the meteorological factors caused a decrease of -0.41 µg/m3. CB is close 
to PV in 2020. One reason could be the ongoing decline in emissions. PV declined 
from 48.14 µg/m3 to 41.05 µg/m3 over a span of 6 years. The other reason might be 
related to the COVID lockdown in the first half of 2020. In Liu et al. (2022), PM2.5 
was detected during the lockdown period of the COVID-19 epidemic, with fewer 
anthropogenic emission sources. MRE is in a fluctuating state. From 2015 to 2019, 
the MRE ranged from -0.95 µg/m3 to 0.78 µg/m3. Whereas in 2020, MRE descended to 
-3.25 µg/m3. The relatively low PM2.5 concentration in 2020 is due to a combination 
of reduced anthropogenic emissions and favorable meteorological conditions that 
facilitate settling or dispersion.

A)

B)

Fig. 2. Statistics of each year PV (A), each year MRE (B) and CB (A)

Figure 3A and B show the spatial distribution of the annual average PM2.5 MRE 
and CB. From the spatial distribution of MRE, it can be observed that meteorological 
conditions in the downstream region have a relatively effective impact on reducing 
PM2.5 concentrations. The meteorological conditions in the midstream region are 
relatively weak, and there is a concentration of cities with high MRE values (Ezhou: 
-0.11; Zhuzhou: -0.16; Yueyang: -0.06; Jingzhou: 0.07). The meteorological condi-
tions in the upstream region are generally weaker than those in the downstream 
but better than those in the midstream. Some cities with higher MRE are dispersed, 
such as Lijiang (-0.10) and Liupanshui (0.32). CB exhibits clear spatial aggrega-
tion. The cities with high CB are clustered in the northeast of the Yangtze River 
Economic Belt and the Chengdu-Chongqing Plain. These cities have relatively high 
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anthropogenic emissions or are chronically affected by pollutants from the north [26].  
The cities with a relatively low CB are concentrated in the upstream area, which is 
associated with relatively low intensity of human activities. Areas near the coast 
with high human activity intensity but low average CB may have a lower MRE.

The spatial distribution of the four types of cities in the Yangtze River Economic 
Belt is shown in Figure 3C. The number of Q1 cities is 22, mainly distributed in the 
midstream of the Yangtze River and the Chengdu-Chongqing city clusters. The num-
ber of Q2 cities is 31, most of which are distributed in the downstream region. Even 
though meteorological conditions have a relatively positive impact on air quality 
in Q2 cities, the levels of PM2.5 remain high in these areas, primarily due to man-
made emissions. There are 70 cities in the Q3 and Q4 categories whose CB is less 
than 35 μg/m3. The number of Q3 cities is 50. They are mainly distributed in the 
mid- and upstream areas. Even if the MRE is relatively weak, the observed PM2.5 
concentration can still easily reach the standard value. There are 20 Q4 cities evenly 
distributed throughout the Yangtze River Economic Belt, including Shanghai and 
other major cities. Such cities have both better meteorological conditions and more 
reasonable anthropogenic emissions.

Fig. 3. Spatial distribution of MRE (A, μg/m3), CB (B, μg/m3), classification (C) in each city. Q1: CB >35 μg/m3, MRE > -0.41 μg/m3; Q2: CB >35 μg/m3, 
MRE > -0.41 μg/m3; Q3: CB >35 μg/m3, MRE > -0.41 μg/m3; Q4: CB >35 μg/m3, MRE > -0.41 μg/m3
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4	 CONCLUSION

Based on machine learning and the cumulative frequency curve method, this 
research determined the MRE and CB values of PM2.5 in cities located in the Yangtze 
River Economic Belt. Cities are classified by setting thresholds for MRE and CB. The 
average value of CB is 34.05 µg/m3, and the average value of MRE is −0.41 µg/m3.  
The anthropogenic emissions have reached Chinese Grade II standards in most cities. 
The concentration of CB was higher in the middle and downstream areas of the Yangtze 
River and the Chengdu-Chongqing urban agglomeration. MRE has a slight decreas-
ing effect on PM2.5, and the effect is greater downstream > upstream > midstream.  
Among the four types of cities, Q1 (with relatively high emissions and poor mete-
orological conditions) is concentrated in the midstream, Q2 (with relatively high 
emissions and good meteorological conditions) is concentrated in the downstream, 
Q3 (with relatively low emissions and poor meteorological conditions) is concen-
trated in the upstream, and Q4 (with relatively low emissions and good meteoro-
logical conditions) is distributed discretely in space. The number of cities in Q3 is 
the largest. According to the classification results, the following suggestions can be 
made for controlling PM2.5 levels: (1) Controlling PM2.5 in Q1 cities is the most chal-
lenging. Transferring a few high-emission industries to Q3/4 cities can help reduce 
pollution. (2) Q2 cities should capitalize on favorable meteorological conditions to 
effectively reduce pollution through emission control and industrial upgrading. In 
addition, the north and south coastal areas can collaborate to balance emissions. 
(3) Q3 cities can accept a portion of industrial transfer, but they need to pay atten-
tion to their relatively fragile environmental capacity. (4) Q4 cities suitable for eco-
nomic development. Cooperation between cities can strive to promote green and 
high-quality development.
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