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PAPER

Earthquake Footprints for Predicting Events

ABSTRACT
This paper considers the problem of predicting earthquakes. It uses a small amount of 
information to create a descriptive key that can be used as a footprint to describe an event. 
A frequency grid clusters events that occurred at the same time and then the algorithm aver-
ages the history of these events over preceding days, in particular the gaps when the events 
did not occur. The gaps are measured for the clustered events only and can be used to create a 
description that is quite unique. Results suggest that seismic events can in fact be traced using 
this key and subsequently recognised again, if the same conditions reoccur. They also suggest 
that force direction may be more important than magnitude, for this type of earthquake. 
Greek and USA datasets have been looked at and the prediction accuracy can be 70% or better. 
The author therefore suggests that this is an interesting method that deserves attention.
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1	 INTRODUCTION

This paper considers the problem of predicting earthquakes. This difficult problem 
is a relatively new science that has been approached from different directions, but 
primarily by studying seismic and electromagnetic activity. What exactly causes 
earthquakes is still not clear, including the underlying mechanisms, and modelling 
this to allow a system to predict future events has to date yielded only modest results. 
After an earthquake has happened, for example, do the same conditions still exist 
so that a future event could be predicted? This is in fact a known problem, where 
the answer is that some earthquakes, called repeaters, repeat under similar criteria, 
and some do not [1]. This would mean that only some future earthquakes would 
be predictable using the proposed method, which is based on evidence only. Most 
study is knowledge-based, attempting to understand how the earthquake works and 
building a model of that. If the model contains real knowledge, then maybe it can be 
applied to new situations as well. Due to the difficulty of the problem, however, a reli-
able modelling approach has not yet been realized. Until recently, the available data 
has been a bit patchy, but now it is possible to map the whole planet regarding its 
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electromagnetic footprint, and this should make it easier to build machine learning 
models in the future. This paper therefore suggests a machine-learning approach 
that uses a relatively small amount of data. It proposes that earthquakes do in fact 
have a footprint, or set of characteristics, that can be traced and recognized. Rather 
than trying to understand the underlying mechanisms that cause the earthquake, 
the clustering method is evidence-based and builds up a lightweight picture based 
only on the evidence that is provided. This has some advantages over knowledge- or 
model-based methods, including neural networks, because it can more easily learn 
stochastic data where random events may occur, and this may be more appropri-
ate for environmental data. A modelling approach should adhere to the internal 
structure of the model and so it cannot be as flexible as an evidence-based approach. 
The new method uses a slightly different clustering technique, which means that it 
may be possible to draw different conclusions from earlier similar methods.

The rest of the paper is organised as follows: Section 2 gives some related work. 
Section 3 describes the methodology of the new prediction algorithm. Section 4 gives 
the geology theory for why the proposed method may work, while Section 5 gives 
the results of running tests using the new method. Finally, Section 6 gives some 
conclusions about the work.

2	 RELATED WORK

Modelling repeating earthquakes is a popular topic, for example [1] [2], where 
they are indicators of slow fault slip, or creep. The paper [1] gives some validity 
to the proposed method by stating that inter-event timing (recurrence interval) 
and/or the duration of a sequence’s activity are good diagnostic features for find-
ing appropriate detection parameters, and that spline functions have been used to 
measure spatiotemporal change. It then states that the disadvantages of repeater 
analysis include their uneven spatial distribution and the uncertainty of the esti-
mates of slip amount, requiring a scaling relationship between earthquake size and 
slip. Both papers suggest cohesion or variation measurements, but they deal with 
the earthquake magnitude. Section 5.3.3 suggests an alternative cohesion factor.

An earlier machine learning system called VAN [3] [4] was shown to produce 
better results for the Greece earthquakes and was a temporal clustering method. 
The VAN method tries to recognise changes in the rock’s electromagnetic emissions, 
with the underlying theory that rocks under stress emit different types of signals. 
It has since been updated [3] with the concept of natural time, which is a time series 
analysis technique that puts weight on a process based on the ordering of events. 
However, the prediction results of the method were questioned and it has both 
supporters and critics. As stated in [5]: ‘Why is temporal clustering such an important 
issue? Primarily because some variation in natural phenomena, such as electric 
field variation, which might follow earthquakes, would typically precede late events 
in a cluster. The electrical variations might thus appear to have some predictive 
capability, but this would actually come purely from the clustering of earthquakes.’ 
This indicates that clustering methods are relevant. The paper [6] introduces a 
new model which considers that the fundamental aspects of the strain accumula-
tion and release processes are critical to causing earthquakes. They also state that a 
problem with current models is that they assume that large earthquakes release all 
accumulated strain, despite evidence for partial strain release in earthquake histo-
ries showing clusters and gaps. The following sections will show an agreement with 
both these papers. While their design may be model-based however, this paper uses 
an evidence-based approach.

https://online-journals.org/index.php/iTDAF
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In [7] they suggest that an acceptable test for earthquake accuracy might be the 
ability to predict an earthquake in a region of 50km from the epicentre and up to 
21 days before the event. However, only a 5% success rate with these criteria is 
deemed a good result. A more recent summary about machine learning methods 
can be found in [8], for example. It notes that much of the progress has been in 
developing the data catalogues to train the AI models on, such as their own STEAD 
dataset. In fact, there have been recent claims of success using AI models [9] [10] 
[11] [12], where some accuracy quotes are over 90%. It seems to be the case that 
reported results can vary quite widely. The paper [9] measures the upper atmo-
sphere’s Ionospheric total electron content, which originates in the rock, while the 
paper [12] considers water vapour in volcanic regions. The existence of thermal 
anomalies prior to large earthquakes [13] has also been demonstrated recently. That 
paper notes the two different types of earthquakes as being ‘brittle fracture’ or ‘stick-
slip’. The competing forces theory of this paper relates to a change from stick-slip to 
brittle fracture, which is also mentioned in [13] and [14]. Not only different meth-
ods, but also different aspects of the earthquake are now predicted. The design of 
this paper makes use of a new clustering algorithm called a Frequency Grid [15]. 
This was also used in [16] to predict energy usage in households, where Dr. Yaxin 
Bi is also an expert in modelling electromagnetic data [17]. The frequency grid is 
described further in the next section.

3	 METHODOLOGY

The proposed method is to try to recognise the events that lead-up to a major 
earthquake and represent them in some unique way. If clusters of earthquakes that 
occur together can be realised, then it should be easier to produce a unique descrip-
tion. If these clusters produced one major event, then they were not involved in a 
different major event, for example. The method uses the frequency grid to cluster 
the seismic events, which are represented by their location, magnitude, and time 
that they occurred. From these clusters, the larger seismic events can be found and 
it can be determined what occurred with them.

3.1	 The frequency grid

The frequency grid is an event-based clustering method that was first used in [15] 
to cluster events for a brain model. It reads a dataset where each row lists events 
that occurred at the same time. These associations produce sets of count values that 
represent which events more often occur together. The grid is entropy-based, how-
ever, rather than maximizing local scores, where the aggregation into a single table 
can produce a holistic view of the associations. Because the clustering process is 
event-based, it does not have to produce a consistent underlying model or theory. 
A neural network, for example, may need to map from input to output using a con-
sistent or continuous function, but the frequency grid does not have to do this. As a 
result, it can maybe model stochastic data more easily, and so environmental data, 
which may include random elements, can be modelled more easily. Another idea 
taken from the energy paper [16] is to discretize the seismic data into bands, thus 
allowing the grid a finer level of granularity. The frequency grid is not numerical 
but is category-based and tries to map similar scores for each category together. 
The seismic events therefore need to be translated from numerical values to text-
based values, where the discrete bands allow each band to be given a token name. 

https://online-journals.org/index.php/iTDAF
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Each event can therefore be represented by a key that stores its longitude-latitude 
location, and then a magnitude representation. The magnitude part is discretized 
into bands as follows: 1 band represents 0.5 of a magnitude, so an earthquake of 
size 5 would have a band value of 10. Therefore, a seismic event would be repre-
sented by something such as 30:20:7, where the longitude of the event would be 30, 
the latitude would be 20, and the actual magnitude would be 3.5. Then for each time 
unit, which is currently set to days, all events that occurred during that time unit are 
added to the dataset as a row of data. When the frequency grid reads the dataset, 
it will try to associate the events in the same row.

3.2	 Grid clustering

The frequency grid therefore clusters data in a slightly different way to the more 
traditional clustering algorithms. Consider the following example, where the text 
is taken from [15]: There is a set of nodes A, B, C, D, E, F and G. Input patterns activate 
the nodes, which is then presented to the classifier as follows:

1.	 A fires with B, C, D and E
2.	 B fires with A, C and D
3.	 C fires with A, B and D
4.	 D fires with A, B and C
5.	 E fires with A, F and G
6.	 F fires with E and G
7.	 G fires with E and F

With basic reinforcement, a weight is incremented when a variable is present 
and decremented when it is not. Then the first set of counts, shown in Table 1 would 
occur. The whole group A-G is updated as a single entity and this would suggest that 
the best cluster group is B, C, D and E, with another one probably F and G, but those 
are not the best clusters.

Table 1. Count reinforcement when updating for individual variables

A B C D E F G

I 5 4 4 4 4 3 3

Grid-based counts. It is clear from the data that A, B, C and D all reinforce each 
other (pattern 1), as does E, F and G (pattern 2), but there is still an inter-pattern 
link between A and E (in both pattern 1 and 2). With a grid format, the input is 
represented by a single pattern group, but this time the counts for each individual 
variable are included and cross-referenced, allowing the inherent structure to be 
included, as shown in Table 2. The grid format lists each variable both as a row 
and a column. Each time a pattern is presented, the related cell value for both the 
row and the column is incremented by 1. In row A, for example, the counts suggest 
that it should be clustered with B, C and D, which is the same cluster conclusion for 
rows B, C and D. It is probably not necessary to update a self-reference in the grid, 
so the leading diagonal can be empty. As the grid does not rely on prior classifica-
tions of the categories, it is really a self-organising mechanism for categorical data.

https://online-journals.org/index.php/iTDAF
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Table 2. Display of the reinforcement between pattern presentations grouping A, B, C and D, plus E, F and G, 
with a single inter-pattern link A-E

A B C D E F G

A x 4 4 4 2 1 1

B 4 x 4 4 1 0 0

C 4 4 x 4 1 0 0

D 4 4 4 x 1 0 0

E 2 1 1 1 x 3 3

F 1 0 0 0 3 x 3

G 1 0 0 0 3 3 x

3.3	 Frequency grid for the earthquake data

For the earthquake data, each row or column in the frequency grid is represented 
by a location plus a discretised band. In this way for example, location A can be 
associated with location B when the seismic magnitude is small, but with location C 
when the magnitude value is large. Consider the following example: locations A (1,1), 
B (1,2) and C (2,1) all have earthquake events that occur on the same days, as shown 
in Table 3. On day 1, only 2 events occur, both with a magnitude of 1 and so the 
frequency grid would cluster A and B together with keys something such as A:1 and 
B:1. On day 2 there are four events, but with different magnitudes. For the smaller 
magnitude, A and B still occur together, but for the larger magnitude A occurs with 
C. The frequency grid would therefore produce a second cluster for the larger mag-
nitude that would be A:2 and C:2. Putting these counts into the frequency grid leads 
to Table 4, where tracing through this manually even, can show the clusters.

Table 3. Example of earthquake events

Date Token Longitude Latitude Magnitude

1 A 1 1 1

1 B 1 2 1

2 C 2 1 2

2 A 1 1 2

2 B 1 2 1

2 A 1 1 1

Table 4. Frequency grid for the earthquake events. Clusters are A:1, B:1 and A:2, C:2

A:1 A:2 B:1 B:2 C:1 C:2

A:1 x 0 2 0 0 0

A:2 0 x 0 0 0 1

B:1 2 0 x 0 0 0

B:2 0 0 0 x 0 0

C:1 0 0 0 0 x 0

C:2 0 1 0 0 0 x

https://online-journals.org/index.php/iTDAF
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3.4	 Creating the event footprint

The frequency grid clustering is only the first stage of the full prediction algorithm. 
After the dataset is created and the frequency grid clusters generated, the significant 
events can be found, based on their magnitude key part. Then, from the original 
dataset, the date of the significant event can be retrieved. The algorithm then wants 
to determine if the days leading up to the significant event indicated that it would 
occur. The algorithm can look at data rows in the dataset for x days before the event. 
After selecting that subset, rows in it are then removed if they do not contain any of 
the events in the significant cluster. This then leaves the algorithm with the cluster 
values and some data rows for some days before the event. It is these data rows that 
are then able to produce the footprint that can describe the significant event. In fact, 
the current version makes use of the dates only to produce the set of values, listed in 
Table 5. The full source code for the program can be downloaded from [18].

Table 5. Set of values to describe an event

Day Count Number of days over which the measurements took place.

Average Day Gap Average gap between days that contained events in that time-frame.

Average Event Count Average number of events that occurred on one of those days.

Not all days would store related events and so there may be gaps in the time 
series. A first part to the key is therefore to look at these gaps and average over them. 
A second part then counts how many of the cluster events occurred during each day 
and averages that. An event footprint can then be created using these average values 
and the number of days that they were created from. A sequential listing of the values 
appears to be sufficient, where function transposition is not required. Because the 
significant event itself occurs only once, it is really the more minor events clustered 
with it that are being traced, to create the footprint. A surprising result when look-
ing at the key value as a footprint, was that it was mostly unique for the significant 
event, but the accuracy did drop when the significant threshold was reduced.

Algorithm pseudo-code. A pseudo-code description of the major steps taken is 
as follows:

1.	 Read the raw earthquake dataset into data rows.
2.	 Convert this into a new set of rows, each representing a day, with the seismic 

events that occurred on that day.
3.	 Pass the event rows through the Frequency Grid to generate the event clusters.
4.	 Note events with a large magnitude and retrieve the clusters that contain them.
5.	 Note the date for the significant event.
6.	 For each significant event, select a time window (before it) and select all event 

rows in that time window.
7.	 Remove any event rows that do not contain any events in the significant cluster.
8.	 From the remaining event rows, it is possible to calculate the stats to generate the 

footprint description.
9.	 Save the footprint descriptions to a file.

3.5	 Prediction algorithm

The test of accuracy would then be for the program to be able to predict the 
significant events by summarising the days before it and creating the footprint 

https://online-journals.org/index.php/iTDAF
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value from them. If a recognised footprint was realised, then that would indicate 
that the related significant event was likely to happen. The prediction algorithm was 
therefore quite similar to the analysis algorithm, but with a few changes. It started 
at day 1 of the dataset and would cumulate the data rows in turn until a maximum 
number for a time window w was used. Then for each of the significant event 
clusters, a new subset would be created that contained only the data rows relevant 
to that cluster. From that subset the footprint key would be created. If the key was 
within a certain error margin of the known footprint key, then the significant event 
would be flagged for the last day in the time window. This would be repeated, a row 
at a time, through the whole dataset, where earlier days would be removed when 
the window moved past them. At the end of this process, the program would print 
out what days it considered each significant event to potentially occur on.

Algorithm pseudo-code. A pseudo-code description of the major steps taken is 
as follows:

1.	 Read the footprint stats, the events rows and clusters data from files and create 
the analysis model.

2.	 Select a number of event rows, inside a time window, and calculate the 
footprints for them.

3.	 If any footprints match with the full analysis footprints, then they can be used to 
predict the significant event.

4.	 The difference between the actual event date and the final row date for the 
prediction window is the amount of time before the significant event that the 
prediction was made.

4	 EARTHQUAKE THEORY

The following theory is the reason why the footprint descriptions may work: The 
first thing to note is that a new clustering algorithm is used, which may change the 
results from any similar earlier attempt. Then, it is really about when the forces 
are working with each other or against each other. If there is a fracture in the rock, 
for example, then forces have created that fracture and will continue to move the 
rock in that direction. If the rock is allowed to consistently move, then there should 
not be a catastrophic event such as an earthquake. The earthquake occurs when 
the rock wants to move but is prevented from doing so. The force behind it then 
builds up until it becomes large enough for a catastrophic event. This is not a new 
idea and was summarized in [13], pertaining to the theory in the paper [14]. It was 
summarized in Section 4 there, as follows:

‘They proposed a brittle failure theory of multiple locked patches in a seismgenic 
fault, indicating that sticking behaviour can only occur when there are high-strength 
obstacles in certain parts of the fault zone, where the fault movement is hindered. 
When these parts undergo brittle fracture due to compression, the rocks on either side 
of the fault would proceed to sudden ‘sliding’. That is, it is a pre-requisite that the high-
strength obstacles must fracture first before the dynamic slip occurs on that fault.’

The analysis algorithm that creates the footprints recognises what smaller events 
are relevant to the significant ones. If these events are occurring regularly, then 
probably, there should not be an earthquake, but if there are gaps in the data rows, 
because these events do not occur, then maybe that represents a situation where 
there is a build-up due to forces blocking each other. These gaps are then maybe 
a prelude to an earthquake event, which is a known theory about earthquakes1. 

1Background knowledge

https://online-journals.org/index.php/iTDAF
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If one set of forces gives way to another, for example, it could lead to catastrophic 
failure. It might also be interesting to consider that after the major earthquake and 
the release of energy from those forces, there may be other sets of events still with 
energy, that will cause the aftershocks, and they could also be represented in the 
related events. Therefore, one idea when measuring day gaps was that there would 
be more gaps leading up to an event, and so this could be a type of general indicator, 
but further tests did not show this as being definitive. Other tests that added the 
event magnitudes as a new key component also performed the same or slightly 
worse. This suggests that the current setup considers force direction more.

5	 TESTING AND RESULTS

A program has been written in the Java programming language to test the theory. 
The original Greece [19] and USA [20] datasets have been re-formatted slightly to be 
read by the program, but the raw data is not changed. These datasets were selected 
because they give the required information of longitude, latitude and magnitude, 
with a timestamp and required a minimum amount of formatting. They are also 
relatively small datasets, being a few megabytes in size, rather than gigabytes. This 
led to 200,000 rows in the Greek dataset, from 2005 to 2022, and 75,000 rows in the 
US dataset, over a nine-month period in 2022. They are in fact, the only 2 datasets 
that have been tested and so the generality possibility looks good. The accuracy 
measurement was a basic count of whether the program was able to predict each of 
the major events. It is not entirely scientific and has some human judgement about 
whether the prediction covers the time that the earthquake actually happened. One 
problem is that the prediction may be made over quite a long time-period and so it is 
difficult to tell exactly when in that time-period it will occur. But results suggest that 
it is always at the end of the time-period. The only danger is that it might just go past 
the actual date by a few days.

The band size was set to 0.5, which meant that an increase of this amount in 
the seismic magnitude would place the event in a different band category. The 
threshold was set to 12, meaning that only seismic events of size 6 or above would 
be considered as significant. The time window was set to 200, meaning that the 
program would look at 200 days before the significant event day, but clearly these 
values can be changed. The Greece dataset had patchy readings from 1968 to 2005, 
and from 2005 onwards, many more readings were taken. Therefore, the dataset 
was used from the start of 2005 only. It was decided that a time unit of days would 
be best and so the US dataset, which has a smaller timeframe, was aggregated to be 
in days rather than every few minutes, but again, using every row in the dataset. 
The only columns that were required was the date, longitude, latitude and the event 
magnitude. The example in the following sections is for the Greece dataset.

5.1	 Data rows and clusters

The program firstly read the dataset and created lists of events for each day in the 
record, where each day represents a data row. A data row could be represented by 
something such as the following:

Date (in days) Events on that day

01/01/2005 00:00:00 38:24:3, 25:20:4, 40:42:5

https://online-journals.org/index.php/iTDAF
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The data row describes three events that occurred on January 1, 2005. The program 
can process in hours, but the preferred time unit is days, so the time part is set to 0. 
The first event ‘38:24:3’ indicates a latitude of 38, a longitude of 24, and a discrete band 
size of 3, or an earthquake magnitude of 1.5. The frequency grid would therefore have 
been able to associate these events, and if this happens consistently over all data rows, 
they can form clusters. If any cluster includes an event that passes the threshold, then 
it can be considered significant. For example, the following was a significant cluster for 
the Greece dataset because one event had a discrete value of 13, and it is the association 
of that event with the other lesser ones in the cluster that allows for the predictions.

Significant Cluster 38:22:6, 40:19:7, 6:30:8, 40:23:8, 39:25:8, 38:22:13

5.2	 Footprint key

There are thus six events in the significant cluster, or five events that may have 
contributed to the major sixth event. The program then wants to know when these 
events were active and when they were not. The significant event is quite rare, so 
there is a time gap before it occurs. For the days leading up to it, each represented 
by a data row in a time window, the rows were removed if they did not contain any 
of the events in the cluster. This would leave data rows, each representing a specific 
day, when any of the significant events occurred. The footprint was then created 
from these matching data rows, which was translated over to a list of gaps between 
days when events occurred and also the number of related events that occurred on 
each day. To determine if a related event occurred, matching with the longitude, 
latitude, and magnitude were all considered. The footprint key can then be created 
from this list and may look something such as the following:

Footprint (Day Count / Av Day Gap / Av Event Count) 50 / 2.5 / 3

This represents the days leading up to the event as follows: there were 50 days in 
the time window before the significant event that contained any of the events in the 
cluster. In these 50 days, the average gap between relevant days was 2.5 and there 
was an average of three relevant events on each of those days.

5.3	 Analysis and predictions

The program can then run an analysis phase, where it selected a time window 
related to a significant event and analysed the data rows that occurred in that time 
window. It noted the events that were part of the significant event cluster and noted 
when they occurred. From this it was able to generate the footprint key and store it with 
the event description, as has just been described. This was then used as the marker that 
the prediction should try to find. These analysis markers were written to a file and then 
read by a simulation program that made predictions on when the significant events 
were likely to happen, as described in section 3.5. The footprint or marker match does 
not have to be exact. For this set of tests, the error margin was set to 5% difference in any 
of the three parts of the footprint key. The footprint would therefore be considered to be 
the same, only if all three parts were within an error margin of 5% of the related actual 
footprint part. One thing to note, however, is that a significant event does not necessar-
ily have a history that can be traced. Some events appear to happen without a warning, 
while other events have a long history trace that can be used to calculate the footprint.

https://online-journals.org/index.php/iTDAF
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Greece dataset. For the Greek dataset, most of the significant events did in fact 
have a footprint. Table 6 shows the significant events with a threshold of value 12 
or above (magnitude value of 6 or above) and only one event occurred without an 
earlier trace. It is therefore not possible to make a prediction for that event. For the 
other events however, the predictions are listed in Table 7. Most of the significant 
events have been predicted and within reasonable time of the real event. Some of 
the time spans are very short, but if the data was tested first, then it would be known 
to expect a long- or short-time span there. One event is a lot more messy, however. 
It occurred on July 16, 2008, but its footprint has been repeated several times over 
the dataset. It happens to be the case that the other flagged events were clustered 
mostly in the same region, so that may have produced a similar footprint. Even if 
that event is not included, the author would suggest that the accuracy is 6.5 good 
predictions from 8 plus one missing, which still gives 72% accuracy.

Table 6. Significant events for the Greece dataset – footprint at event

With Footprint Without Footprint

Key Date Key Date

2/46.5/3 @ 36:23:12 9 January 2006

0/0.0/3 @ 38:27:13 31 October 2020

18/10.7/6 @ 37:23:12 7 January 2008

83/2.4/2 @ 38:22:13 9 June 2008

37/5.4/3 @ 36:28:12 16 July 2008

12/2.7/12 @ 36:27:12 2 April 2011

13/14.8/29 @ 40:25:12 25 May 2014

28/6.6/18 @ 39:21:12 18 November 2015

1/142.0/17 @ 40:22:12 4 March 2021

Table 7. Predictions for the Greece dataset

Footprint Event Date Predictions

2/46.5/3 36:23:12 9 January 2006 13 October 2005 to 9 January 2006

18/10.7/6 37:23:12 7 January 2008 6 January 2008 to 8 January 2008

83/2.4/2 38:22:13 9 June 2008 15 February 2008 to 9 June 2008

37/5.4/3 36:28:12 16 July 2008 13 June 2006 to 22 June 2006
3 April 2007 to 6 April 2007
9 May 2007 to 13 May 2007
5 July 2008 to 19 July 2008
3 June 2010 to 13 June 2010
14 June 2010 to 20 June 2010
29 September 2010 to 30 September 2010
3 October 2010
15 August 2020 to 29 August 2020
21 September 2020 to 24 September 2020
14 December 2020 to 15 December 2020

12/2.7/12 36:27:12 2 April 2011 29 March 2011 to 4 April 2011

13/14.8/29 40:25:12 25 May 2014 20 May 2014 to 25 May 2014

28/6.6/18 39:21:12 18 November 2015 17 March 2012 to 22 March 2012
16 November 2015 to 18 November 2015

1/142.0/17 40:22:12 4 March 2021 1 March 2021 to 4 March 2021
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USA dataset. For the USA dataset however, over 50% of the significant events did 
not have a footprint. Table 8 shows the significant events with a threshold of value 
of 12 or above and only eight have a traceable footprint, while nine do not. Of the 
eight that have a footprint, predictions could be made for seven of them, as listed in 
Table 9. These predictions are quite close however and so in real terms that is still a 
40% accuracy over the whole dataset.

Table 8. Significant events for the USA dataset – footprint at event

With Footprint Without Footprint

Key Date Key Date

2/1.0/95 @ -59:-25:12 7 March 2022 0/0.0/0 @ 12:-87:13 22 April 2022

3/1.0/108 @ -20:-178:12 8 March 2022 0/0.0/0 @ 24:123:12 10 May 2022

90/1.0/92 @ -58:149:12 5 June 2022 0/0.0/0 @ -16:-174:12 20 May 2022

92/1.0/138 @ -9:-71:13 9 June 2022 0/0.0/0 @ 24:121:12 21 June 2022

156/1.0/124 @ 44:148:12 8 August 2022 0/0.0/0 @ 56:166:12 21 Sept 2022

1/192.0/139 @ 23:121:13 Twice 0/0.0/0 @ 4:96:12 23 Sept 2022

1/50.0/123 @ -5:101:13 19 November 0/0.0/0 @ 18:-103:13 23 Sept 2022

53/3.6/110 @ -15:-173:13 5 December 2022 0/0.0/155 @ 23:121:13 Twice

0/0.0/0 @ -26:178:13 10 Nov 2022 ×3

Table 9. Predictions for the USA dataset

Footprint Event Date Predictions

2/1.0/95 -59:-25:12 7 March 2022 6 March 2022 to 7 March 2022

3/1.0/108 -20:-178:12 8 March 2022 7 March 2022 to 8 March 2022

90/1.0/92 -58:149:12 5 June 2022 31 May 2022 to 9 June 2022

92/1.0/138 -9:-71:13 9 June 2022 4 June 2022 to 9 June 2022

156/1.0/124 44:148:12 8 August 2022 31 July 2022 to 15 August 2022

1/50.0/123 -5:101:13 19 November 2 November 2022 to 12 Dec 2022

53/3.6/110 -15:-173:13 5 December 2022 21 November 2022 to 12 Dec 2022

Adding a cohesion factor. One other test measured when the days were 
continuous, as well as the day gaps. Therefore, the key would include a value repre-
senting the day gaps and another equivalent value for continuous days. It may be the 
case that for smaller-magnitude earthquakes, continuous days can show more vari-
ation than the gaps. The test with the new four-component footprint was then run 
on both datasets again, but with a threshold value ranging from 10 to 12 (magnitude 
five to six). Table 10 gives a summary of all the results. The higher magnitude of 
six produced the same results as for the three-component keys, but for the other 
thresholds, the results were slightly improved. For the lower thresholds, the clus-
ters were not predicted as accurately in any case, and some of them could be very 
incorrect. The USA data with a 10 threshold, for example, had mostly misses because 
no footprint was available. Of the 19 predictions that were made, however, 17 would 
be acceptable. The table therefore gives an accuracy score for significant events only 
when predictions were made and then also for all significant events. This shows that 
there is still room for adding new variables to the key.

https://online-journals.org/index.php/iTDAF


iTDAF | Vol. 2 No. 2 (2024)	 IETI Transactions on Data Analysis and Forecasting (iTDAF)	 15

Earthquake Footprints for Predicting Events

Table 10. Summary of the test results for the four-component key (day count/Av day gap/ 
Av event count/Av continuous day)

Dataset Magnitude % with Footprint % Prediction with Result % Prediction All

Greece 6+ 88 81 72

Greece 5.5+ 95 75 71

Greece 5+ 94 57 54

USA 6+ 47 88 41

USA 5.5+ 41 100 36

USA 5+ 33 89 30

6	 CONCLUSIONS

This paper has suggested a method of producing a footprint key with which to 
recognise seismic events. It is based on the theory that competing forces can block 
each other, causing a build-up of pressure and eventually an earthquake. In fact, 
there are different types of earthquakes. Brittle fracture might also occur when ris-
ing magma fractures the rock in a more consistent way, but the author wishes to 
focus on the proposed method only and not the Geological variations. The process 
requires training an algorithm on previous events, and if the conditions change, 
the process may not work very well. It is also evidence-based, which means that 
it can map more easily to the data but has very little knowledge or understanding 
of that data. It might therefore not be possible to transfer results from one region 
to another, but it is likely to be a flexible and generally applicable method. The 
footprint is generated from only a small amount of information, and sometimes it 
cannot be created. When clusters are generated, however, even the current key is 
mostly unique. Because the significant event itself occurs only once in a set of data, 
it is really the more minor events clustered with it that are being traced, which may 
be another reason why event magnitude is not helpful, because there will be more 
of a mixture there. The current program is only a first attempt, but it has been able to 
show a proof of concept, and the accuracy of the predictions is probably at an accept-
able level. Therefore, the author would suggest that this is an interesting method that 
deserves further investigation. He is unlikely to continue this work himself, so the 
software is available to download and use for free [18].

6.1	 Future work

The large time windows for predicting events could pose problems in the real 
world if a precise declaration was required for evacuating an area, for example. 
So, this would need to be looked at further, but it would be known from the testing 
phase which events would be likely to produce the larger time windows. The end 
of the window was usually much closer to the actual event, but it did pass the event 
date on a few occasions. Section 5.3.3 showed that it may be possible to add new fac-
tors to the key. The footprint is really just a list of variable values and has definitely 
not been examined exhaustively. The four-component key with a cohesion factor 
proved to be slightly better than the three-component key, for example. Maybe some-
thing such as electromagnetic or vapour readings could be tried, or temperature is 
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another possibility. But the current set looks to be appropriate for comparing forces. 
A cohesion value relating to the relative directions of the fault forces is therefore 
another possibility, while the paper [1] would suggest waveform coherence instead. 
The method is very lightweight. The tests took just seconds or minutes on a standard 
laptop. Therefore, it might also be used as simply one indicator in a larger system that 
could incorporate some of the more detailed knowledge-based approaches as well.
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