
 56 IETI Transactions on Data Analysis and Forecasting (iTDAF) iTDAF | Vol. 2 No. 2 (2024)

iTDAF | eISSN: 2959-0442 | Vol. 2 No. 2 (2024) |

TDAF IETI Transactions on

Data Analysis and Forecasting

Nadeem, M.M., Raza, Y., Sajid, A., Razzaq, H., Malik, R., Vidanagamachchi, S. (2024). Review Analysis of Web Socket Security: Case Study. IETI Transactions
on Data Analysis and Forecasting (iTDAF), 2(2), pp. 56–75. https://doi.org/10.3991/itdaf.v2i2.51015

Article submitted 2024-06-09. Revision uploaded 2024-08-02. Final acceptance 2024-08-02.

© 2024 by the authors of this article. Published under CC-BY.

Online-Journals.org

PAPER

Review Analysis of Web Socket Security: Case Study

ABSTRACT
Web sockets (WS) have revolutionized real-time online communication by enabling two-
way communication channels using a single transmission control protocol (TCP) connection,
significantly enhancing the user experience in web applications. However, this advancement
has also presented certain security challenges that need to be addressed in order to ensure
secure and reliable communication. This review paper delves into the security aspects of
WSs, analyzing and contrasting various tactics and methodologies proposed for securing WS
connections. By conducting a thorough analysis of notable study contributions dating back
to 2015, we have found common vulnerabilities and risks, such as cross-site scripting (XSS),
cross-site web socket hijacking (CSWSH), and man-in-the-middle (MITM) attacks. This paper
evaluates the effectiveness of several security measures, including confirmation, encryption,
and different anomaly detection algorithms. Further, this study scrutinizes the deficiencies
and constraints that have been shown in these study initiatives, placing emphasis on areas
that require further examination. The main objective of our comprehensive examination is
to build a robust foundation for future studies on WS security, promoting the development of
more resilient and impervious live communication networks.

KEYWORDS
XXS, WS, API, DOS, TCP

1	 INTRODUCTION

In 2011, web socket (WS) was introduced, and it provides a two-way commu-
nication channel over a single WS connection.WS protocol was standardized by
the internet engineering task force (IETF) as request for comment (RFC) 6455, and
the WS application program interface (API) is standardized by the world wide
web consortium (W3C). WS provides a way of creating a persistent, low-latency
connection [12], which is capable of handling transactions initiated by either the
client or the server, thus being full-duplex and support both data dispatch and data
fetching [12].

Malik Muhammad
Nadeem1, Yousaf Raza1,
Ahthasham Sajid1(),
Hamza Razzaq1, Rida
Malik1, Sugandima
Vidanagamachchi2

1Department of Cyber
Security, Riphah Institute of
Systems Engineering, Riphah
International University,
Islamabad, Pakistan

2Department of Computer
Science, Faculty of Science,
University of Ruhuna,
Matara, Sri Lanka

ahthasham.sajid@
riphah.edu.pk

https://doi.org/10.3991/itdaf.v2i2.51015

https://online-journals.org/index.php/iTDAF
https://online-journals.org/index.php/iTDAF
https://doi.org/10.3991/itdaf.v2i2.51015
https://online-journals.org/
https://online-journals.org/
mailto:ahthasham.sajid@riphah.edu.pk
mailto:ahthasham.sajid@riphah.edu.pk
https://doi.org/10.3991/itdaf.v2i2.51015

iTDAF | Vol. 2 No. 2 (2024) IETI Transactions on Data Analysis and Forecasting (iTDAF) 57

Review Analysis of Web Socket Security: Case Study

1.1	 Overview	of	web	socket

The WS is a revolutionary technology that greatly enhances real-time commu-
nication on the Internet. WS differs from typical hypertext transfer protocol (HTTP)
requests by establishing a persistent connection between the web browsers and the
servers, allowing for bi-directional, real-time data exchange without the need for
constant page refresh. Two-way communication enables capabilities such as live
chat and collaborative editing, allowing both the server and browser to initiate
data transmission. The WS offers a reduced time delay, resulting in a prompter and
more interactive user experience. So, in addition to web browsers and servers, its
versatility also applies to a wide range of application environments that require
instantaneous data exchange. The WS facilitates the development of a more dynamic
and interactive online environment by enabling features that depend on uninter-
rupted data transfer.

The WS protocol was officially defined by the IETF in 2011, specifically as
RFC 6455. Major accomplishments in the widespread deployment of WS technol-
ogy include:

•	 In December 2009, Google Chrome 4 became the first browser to include com-
plete WS capability.

•	 In 2011, Ian Fete issued RFC 6455, which finalized the WS protocol.
•	 In 2011, the responsibility for standardizing Web Socket’s was transferred from

the W3C and WHATWG to the IETF [4].

1.2	 Historical	revolution	in	web	socket	security

The historical growth of WS security demonstrates the dynamic interaction of
technological improvements and increasing threats. WS usage outpaced security
concerns, resulting in vulnerabilities including XSS and data interception. However,
as the technology advanced, developers and academics concentrated on resolving
these flaws. This progression saw the emergence of strong security mechanisms
and standards designed expressly for WS communication. Moreover, advances in
encryption algorithms and authentication processes improved the integrity and
secrecy of the WS. Collaborative initiatives within the cyber security industry, as well
as regulatory frameworks, all helped to improve the WS security standards. Today,
WS security demonstrates the proactive efforts used to reduce risks and ensure
the secure and dependable functioning of real-time online applications. The time-
line below reveals when a new security feature was added to the WS technology.
Figure 1 below gives an overview of web sockets.

2010: Introduction of web socket protocol (RFC 6455) [31]
2012: Implementation of secure web socket (WSS) [31]
2013: Cross-origin resource sharing (CORS) [31]
2015: Enhanced handshake mechanisms [31]
2016: Advanced encryption techniques [31]
2018: Multi-factor authentication (MFA) integration [31]

https://online-journals.org/index.php/iTDAF

 58 IETI Transactions on Data Analysis and Forecasting (iTDAF) iTDAF | Vol. 2 No. 2 (2024)

Nadeem et al.

Fig. 1. Historical review of web socket [31]

The WS facilitates instantaneous, bidirectional communication between the
web browser and server. It uses a solitary, enduring TCP connection for effective
data interchange. Although often known as the HTML5 W-API, which is actually an
independent standard that is currently being developed [3] and [6], it has not been
officially standardized, so many web browsers already implement the feature. As
WS is on the verge of transforming web communication, its security implications
have become extremely important. This study examines the security risks associ-
ated with the WS protocol and API, despite their recent introduction and minimal
public study. It is also investigating the security measures provided by this protocol
[1] and [6]. Figure 2 below illustrates the basic communication between a web client
and remote services using the HTTP protocol.

Fig. 2. Fetching real-time data with HTTP and web socket [1]

The WS protocol, originally intended for web browser and servers but also suit-
able for other applications, operates over TCP to provide rapid communication. The
rising in popularity of WS technology has significant implications for web security
in the coming years [2] and [5].

1.3	 Importance	of	web	socket

The WS allows two-way, real-time communication between web browser and
server, which is essential to contemporary web applications. Instant data sharing

https://online-journals.org/index.php/iTDAF

iTDAF | Vol. 2 No. 2 (2024) IETI Transactions on Data Analysis and Forecasting (iTDAF) 59

Review Analysis of Web Socket Security: Case Study

is made possible by this, eliminating the requirement for frequent page refreshes.
Moreover, WS reduces network overhead over standard HTTP queries by using a
single, persistent TCP for effective data transmission. This type of adaptability is
useful for a variety of real-time data interaction requirements that go beyond the
web browser and server [7] and [12]. By providing capabilities such as live chat, col-
laborative editing, and a real-time data dashboard, WS ultimately improves the user
experience and increases user engagement and response. Over conventional web
communication, WS provides a potent boost. Full-duplex, two-way data exchange
is made possible by the long-lasting, low-delay link it creates. Thus, real-time data
pushing and pulling is made possible by the fact that both the web server and the
browser can start data transfer [8]. As all of the main browsers now support this
widely used technology, it is an essential tool for creating dynamic, interactive web
applications that need real-time functionality.

2	 SECURITY	CHALLENGES	OF	WEB	SOCKET

The security issues brought on by WS include XSS, cross-origin web socket
hijacking (COWH), weak authentication, denial of service (DoS) attacks, message tam-
pering, MITM attacks, and client impersonation. Strong authentication, encryption,
and validation protocols, together with frequent security audits, can help reduce
these threats. When WS is being used, it’s common to ignore the recommended secu-
rity procedures [10] and [11]. The WS handshake by itself does not naturally manage
authentication. Although cookies or other techniques may be used in standard HTTP
ways, the WS protocol implements authentication processes at the application layer.
If not done, this can make the connection open to unwanted access. WS uses a per-
manent connection hence, hostile actors on the network may intercept or alter the
data transferred [15]. Data confidentiality and integrity are therefore made essential
by encryption. Data compromise is not at all likely because the program has no
known security vulnerabilities, and any possible assaults would be contained [19].
Attackers might take over a web connection that a genuine user started by taking
advantage of flaws in the handshake procedure. This enables them to pass for the
user and obtain unapproved access to features or data. WS connections are prone
to DoS attacks because of their persistent character, possible XSS site flaws, and pri-
vate data exposure brought on by insufficient message and WS data neutralization
[8] and [9]. A server may be overrun by attackers’ connection requests, taxing its
resources and preventing authorized users from connecting. These types of security
issues emphasize the need to combine WS with strong security measures. These
hazards can be reduced, and safe real-time communication can be guaranteed by
encryption, appropriate authentication, and rate limiting.

Assuring that authenticated users have the rights required to access resources
inside a system is known as authorization [17]. Usually, the role of the user inside
the service determines their access to resources. A fundamental guideline in autho-
rization, the principle of least privilege urges users to restrict access to resources
necessary for their designated duties, therefore reducing the possibility of illegal
access [16].

The WS commonly uses transport layer security (TLS) to establish a secure
connection and encrypt data. Encryption fosters confidence, strengthens security,
and may be obligatory for confidential information in regulated sectors [23].
Figure 3 illustrates secure communication vs. unsecure communication using HTTP
and HTTPS.

https://online-journals.org/index.php/iTDAF

 60 IETI Transactions on Data Analysis and Forecasting (iTDAF) iTDAF | Vol. 2 No. 2 (2024)

Nadeem et al.

Fig. 3. Secure connection and unsecure connection in web socket [23]

Encryption keeps data private by restricting access to only the people who are
supposed to. Attackers running the danger of MITM attacks can intercept and read
communications without encryption, as illustrated further in Figure 4. Data is inse-
cure because default WS usage on port 80 is not encrypted [23] and [24]. To protect
data from MITM attacks, port 443 with SSL encryption is used.

Fig. 4. Man-in the-middle attack [23]

Authorization in WS apps is mostly dependent on the particular application
context. Attackers could, for example, read restricted material belonging to other
users, use the WS service without any kind of authorization, or access functionalities
needing higher-level authorization than first allocated [16] and [22]. Authorization
using WS is mostly application-context-dependent. Three situations are conceivable,
as illustrated in Figure 5. Further:

•	 An attacker can utilize a WS service function that needs higher-level authoriza-
tion than the user was first granted.

•	 A function displaying other users’ restricted material is open to an attacker.
•	 Without any authorization, an attacker can access the WS service.

Fig. 5. Illustration of the listed attack scenarios [16]

https://online-journals.org/index.php/iTDAF

iTDAF | Vol. 2 No. 2 (2024) IETI Transactions on Data Analysis and Forecasting (iTDAF) 61

Review Analysis of Web Socket Security: Case Study

2.1	 Rational	of	conducting	review	on	web	sockets	2024

The rising dependency on WS technology for real-time, two-way communication
in web applications needs a thorough analysis of the security implications. The WSs,
although providing substantial advantages over typical HTTP polling and AJAX tech-
niques, have unique security issues due to their permanent connection. As WSs are
widely used in vital applications such as financial services, healthcare, and collective
tools, it is very critical to understand their possible vulnerabilities and implement
strong security methods. A thorough assessment of WS security is required to detect
and mitigate vulnerabilities such as MITM attacks, unauthorized access, and data
breaches [20]. Previous study has identified certain risks and recommended numerous
solutions, but a comprehensive comparison of these strategies and an assessment of
their efficacy remain unexplored. This study seeks to offer a complete overview of the
current status of WS security by testing important study articles released since 2008,
identifying prevalent flaws, and assessing the effectiveness of suggested fixes. This ini-
tiative will added to the academic body of knowledge while also providing practical
insights for developers and security experts working to protect WS-enabled apps.

Objectives of review 2024. The review paper analyzes the security techniques
and vulnerabilities of WSs in key study papers, highlighting the pros and cons.

Structure of review
This type of study utilizes a methodical framework to explore the security aspects of

the WS. The abstract provides a concise overview of the study’s extent and goals. The
introduction offers a backdrop and delineates the importance of the WS security. The
detailed analysis of existing studies and methodology is presented in the following com-
prehensive literature review. A comparative analysis is conducted to assess different
security measures and provide valuable insights for improving WS security standards.

3	 LITERATURE	REVIEW

In order to select literature for a WSs review paper, the authors in this study access the
following standards: topical relevance, citations, methodological relevance, time frame
relevance, impact, and diversity of perspectives, as illustrated in Figure 6 below. Make
sure that sources are recent, relevant to the subject matter, employ appropriate method-
ologies, have a significant impact, are well-cited, and provide a variety of perspectives.

Fig. 6. Survey flow

https://online-journals.org/index.php/iTDAF

 62 IETI Transactions on Data Analysis and Forecasting (iTDAF) iTDAF | Vol. 2 No. 2 (2024)

Nadeem et al.

The WS is susceptible to security vulnerabilities that are typical of other online
technologies, underscoring the significance of installing suitable security measures.
Although some security controls that are relevant to general web technologies may
also be used for the WS, it is the duty of developers or service administrators to
apply these controls. Regrettably, when humans are responsible for safeguarding
systems, there is a risk of overlooking or improperly implementing security controls
[13] and [18]. This issue may arise due to developers’ inadequate understanding of
appropriate implementation techniques or time limitations. As a result, if security
rules are not built or performed correctly, WS applications can be easily exploited.
There are three techniques that are defined.

The WS encryption employs cryptographic algorithms to obfuscate data using
confidential keys, rendering it indecipherable to any unauthorized individu-
als intercepting the network traffic. This guarantees confidentiality by ensuring
that only authorized parties, such as the server and browser, are able to compre-
hend the information that is being transferred. Integrity refers to the state of data
remaining unchanged during transmission, thereby preventing any unauthorized
modifications.

In any service to confirm the validity of a user. Still, WS by itself makes no demands
about the kind of authentication. Frequently, developers use the “set-cookie” header
method, giving the user the final say [14] and [19]. Permission-based access control
to resources and user data is made possible in part via authentication.

Table 1. Critical analysis

Technique Description Benefits Risks Implementation

Encryption Makes data
unintelligible during
transmission by
jumbling it with
secret keys.

•	 The material is understood only
by those with the necessary
authorization.

•	 Integrity is the untouched data.
•	 Increases security and

fosters trust.
•	 Maybe required for private data.

•	 The default Web Socket
(port 80) is not encrypted,
making it open to MITM
attacks.).

•	 All Constructs a secure
connection and encrypts
data using Transport
Layer Security (TLS/SSL).
TLS implementation is
made easier using several
modules and frameworks

Authentication Whether a user is
legitimate to use the
Web Socket service.
manages, according to
rights, user data and
resource access.

•	 Controls access to resources and
user data based on permissions.

•	 No built-in method
in Web Socket.

•	 Developers rely on
approaches like “set-cookie”
header, leaving room
for vulnerabilities.

•	 Developer-defined: Utilize
application-specific
methods like custom
headers or tokens.

Authorization Ensures authenticated
users have the
necessary privileges
to access specific
resources within
the system.

•	 Minimizes risks of unauthorized
access based on the Principle of
Least Privilege.

•	 Heavily relies on
application context.

•	 Attackers could potentially
gain access to unauthorized
functions, data, or the
entire service.

•	 Context-dependent:
Developers define access
levels based on user roles
and permissions.

4	 CRITICAL	ANALYSIS

In order to guarantee the confidentiality, integrity, and controlled access of data
transmitted between clients and servers, WS technology is dependent on a num-
ber of critical security mechanisms. Encryption, which is predominantly based
on TLS, is responsible for the encryption of data, rendering it indecipherable to

https://online-journals.org/index.php/iTDAF

iTDAF | Vol. 2 No. 2 (2024) IETI Transactions on Data Analysis and Forecasting (iTDAF) 63

Review Analysis of Web Socket Security: Case Study

unauthorized entities, as illustrated in Table 1. This encryption process guaran-
tees that sensitive information is safeguarded from potential attacks, including
MITM interceptions. Although authentication is not expressly required by WS stan-
dards, it is essential for legitimately verifying the identity of users who access the
service. Typically, developers employ methods such as the “set-cookie” preamble to
implement authentication, which allows for greater flexibility in user validation.
In contrast, authorization is responsible for determining the level of access that
authenticated users are granted, which is typically determined by their duties and
permissions within the system. The risk of unauthorized data exposure or miscon-
duct is mitigated by ensuring that users only access resources necessary for their
designated tasks by adhering to the Principle of Least Privilege. WS applications
may be susceptible to exploitation if these security mechanisms are not imple-
mented effectively, which could result in data breaches and compromise. Therefore,
it is imperative to comprehend and effectively implement encryption, authentica-
tion, and authorization in order to enhance the security of WSs against the ever-
changing nature of cyber threats.

4.1	 Vulnerability	mitigation

Integrity and security of client-server communication channels depend on WS
technology vulnerabilities being mitigated. WS applications run the danger of XSS,
COWH, and authentication method flaws. With any luck, this tool will be helpful
and combat XSS, [25]. Effective mitigation of these weaknesses calls for a multi-
dimensional strategy. First off, preventing XSS attacks—which can jeopardize the
integrity of data transmitted across WS connections—needs the implementation
of strong input validation and sanitization systems. Effective user input validation
and sanitization help developers reduce the possibility of unwanted data modifi-
cation and malicious script insertion. This is made feasible by WS, which enables
distant servers to send inexpensive heartbeat queries to many websites [20]. Second,
by using protocols such as WSS to secure WS connections, one may reduce the
possibility of COWH assaults, in which criminals try to take over WS connections in
order to capture private data. Through SSL/TLS protocol encryption of WS communi-
cation, businesses can guarantee that data transmitted between clients and servers
is private and unaffected by manipulation or listening in. Because SSL’s constituent
protocols are modular, future expansions will be simple to integrate. [21] and [26].
Moreover, it is imperative to improve authentication and permission procedures
in order to manage WS resource access and stop unwanted access. Putting robust
authentication techniques into practice, including OAuth or token-based authenti-
cation, may help confirm user identities and guarantee that only authorized users
can use WS services. Further limiting access to sensitive resources and preventing
illegal activities inside WS applications is the enforcement of fine-grained authoriza-
tion restrictions based on user roles and privileges. Additionally, crucial elements of
vulnerability mitigation plan for WS apps include proactive monitoring, the vulner-
ability assessments, and regular security audits. Organizations can spot and fix any
dangers before malevolent actors take advantage of them by routinely evaluating
and fixing security flaws. According to the test findings, the issue stems mostly from
susceptible programs [28]. Finally, developing a culture of security consciousness
inside organizations requires raising developers and administrators’ knowledge
of best practices in WS security. Organizations may improve their defenses against

https://online-journals.org/index.php/iTDAF

 64 IETI Transactions on Data Analysis and Forecasting (iTDAF) iTDAF | Vol. 2 No. 2 (2024)

Nadeem et al.

changing threats and protect WS-based apps from possible vulnerabilities by giving
teams the knowledge and ability to properly detect and reduce security concerns.

5	 SECURITY	FRAMEWORK’S	AVAILABLE

With the help of several security frameworks, developers may improve the secu-
rity of WS-based apps by giving them access to tools and recommendations. Notable
WS security frameworks include

5.1	 The	OWASP	web	socket	security	cheat	sheet

Provides comprehensive guidance and recommendations for ensuring the secu-
rity of WS communication. In order to help secure WS implementations, the Open
Web Application Security Project (OWASP) created this handy cheat sheet. This doc-
ument encompasses several facets of WS security, encompassing authentication,
authorization, encryption, and safeguarding against prevalent vulnerabilities such
as XSS and COWH. This section outlines a standard testing methodology that may be
created inside an organization [27].

5.2	 Socket.IO	security

Socket.IO is a widely used JavaScript library that enables real-time online appli-
cations, including support for WS. The socket.IO security documentation offers guid-
ance and insights on how to secure socket.IO-based applications. It covers several
aspects, such as message validation, authentication, and authorization.

5.3	 Spring	security

Provides extensive support for safeguarding WS communication for developers
using the Spring Framework in Java applications. The Spring Security manual pro-
vides instructions and illustrations on how to configure authentication, authoriza-
tion, and encryption in applications that use WS technology. The process involves
the conversion of a sequence of bytes into distinct frames. A frame has the capability
to hold either text or a binary message [28].

5.4	 Securing	SignalR	with	ASP.NET	core

SignalR is a library for ASP.NET Core applications that enables real-time com-
munication. It supports WS as one of its transport protocols. The SignalR security
literature offers recommendations on ensuring the security of SignalR connections,
encompassing authentication, authorization, and safeguarding against prevalent
security vulnerabilities.

https://online-journals.org/index.php/iTDAF

iTDAF | Vol. 2 No. 2 (2024) IETI Transactions on Data Analysis and Forecasting (iTDAF) 65

Review Analysis of Web Socket Security: Case Study

5.5	 WAMP,	which	stands	for	web	socket	application	messaging	protocol

It is an open standard that enables real-time communication over WS connec-
tions. It is commonly used alongside frameworks such as Autobahn, Python, and
Crossbar.io. The WAMP standard incorporates measures for authentication, authori-
zation, and encryption, allowing developers to construct secure applications based
on WS. The WAMP utilizes a central router to facilitate the routing of messages
between components [29] and [30]. It facilitates two communications patterns:
Publish & Subscribe (PubSub) is a mechanism that enables components to send mes-
sages to channels and subscribe to receive messages that are relevant to them.

5.6	 Routed	remote	procedure	calls	(rRPC)

It allows components to execute remote procedures hosted by other components,
allowing distributed communication across WS connections. These frameworks pro-
vide developers with significant tools, documentation, and code samples to assist
them in implementing strong security mechanisms in WS applications. This helps
to guarantee the confidentiality, integrity, and availability of real-time communica-
tion channels.

6	 CASE	STUDIES

6.1	 Ip	authorization	bypass

A serious vulnerability in Keeps com’s Web Socket implementation—a top
Amazon data analysis SaaS service—is examined in this case study. Using Nginx to
build a WS reverse proxy with certain headers allowed one to replicate the web-
site and get around IP use limitations. This weakness opens up the service to pos-
sible exploitation by enabling unauthorized users to utilize the data against usage
restrictions.

6.2	 Configuring	reverse	proxy

The Nginx setup, as illustrated in Figure 7, shows how to configure a reverse
proxy to the WS endpoint of Keepa. Carefully adjusting headers allows the proxy to
mimic real traffic, therefore mirroring the website and removing IP use limitations.

Fig. 7. Reverse proxying and header manipulation

https://online-journals.org/index.php/iTDAF

 66 IETI Transactions on Data Analysis and Forecasting (iTDAF) iTDAF | Vol. 2 No. 2 (2024)

Nadeem et al.

6.3	 Keepa.com

Figure 8 illustrates the search results for “shoes” on Keepa.com. The developer
tools disclose the WS URL as push2.keepa.com. This demonstrates that the original
site is utilizing this particular WS endpoint to enable real-time data communication.
The client’s active connection to Keepa’s server is verified by the continuous data
transfer displayed in the network tab. The true site is subject to stringent IP utiliza-
tion policies, which guarantee that each client session complies with Keepa’s terms
and conditions, thereby preserving the security and integrity of the data. The real
site operates under strict single-IP usage policies.

Fig. 8. Developer tools interacting to real socket wss://push2.keepa.com

6.4	 Mirrored	site

Conversely, Figures 9 and 10 illustrate the mirrored site, which is identified by
a WS URL that commences with kp-push, indicating the effective implementation
of the reverse proxy. Despite the fact that the domain is obscured, it is evident
that the reverse proxy is successfully replicating the connection to the original
site. The network page is revealed in the final image of the series, which depicts
the binaries that are being sent and received in the same manner as they would
on the genuine Keepa.com. This illustrates that the reverse proxy configuration
circumvents IP restrictions and replicates Keepa.com’s data transmission, thereby
emphasizing a substantial security vulnerability. This configuration could poten-
tially facilitate data scraping and misconduct by permitting unauthorized access to
Keepa’s services.

https://online-journals.org/index.php/iTDAF

iTDAF | Vol. 2 No. 2 (2024) IETI Transactions on Data Analysis and Forecasting (iTDAF) 67

Review Analysis of Web Socket Security: Case Study

Fig. 9. Reverse proxied site successfully bypassing IP restriction on web socket

6.5	 Authentication	bypass

Fig. 10. Proxied socket getting binaries as original

For the authorization It has been observed that in the mechanism of keepa.com
authentication, we have noticed that keep is authenticating users in its WS, where
the WS-protocol is being used as a token for user login sessions. For this purpose, we
have setup our Kali machine in Vmware and installed tcpdump and wireshark in
our machine to mimic the concept of capturing packets over the network. Our net-
work interface was ETH0, and we have examined the IP addresses of their WS urls,
push2.keepa.com, by using lookup push2.keepa.com, which gave us these results.

https://online-journals.org/index.php/iTDAF

 68 IETI Transactions on Data Analysis and Forecasting (iTDAF) iTDAF | Vol. 2 No. 2 (2024)

Nadeem et al.

•	 Non-authoritative answer:
•	 Name: push2.keepa.com Address: 104.26.0.227
•	 Name: push2.keepa.com Address: 104.26.1.227
•	 Name: push2.keepa.com Address: 172.67.74.155
•	 Name: push2.keepa.com Address: 2606:4700:20::ac43:4a9b
•	 Name: push2.keepa.com Address: 2606:4700:20::681a:e3
•	 Name: push2.keepa.com Address: 2606:4700:20::681a:1e3

By identifying their ips, we have crafted our tcpdump command to capture only
those packets that are sent to the WS of keepa.com, as shown below in Figure 11. sudo
tcpdump -i eth0 host 104.26.0.227 or host 104.26.1.227 or host 172.67.74.155 -w capture.

Fig. 11. Dumping packets over network

After that, we browsed keepa.com and signed in with user login credentials, as
illustrated in Figure 12 below.

Fig. 12. Logged in session on same network

https://online-journals.org/index.php/iTDAF

iTDAF | Vol. 2 No. 2 (2024) IETI Transactions on Data Analysis and Forecasting (iTDAF) 69

Review Analysis of Web Socket Security: Case Study

Then the authors closed the tcpdump capture and then opened the captured file via
wire shark, which showed us multiple packets sent over different protocols. Our inter-
est was in HTTP, so the identified packets 5 and 9 are HTTP, as presented in Figure 13.

Fig. 13. Dumped packets of our interests

After using the follow TCP stream, authors have collected the complete header
of the handshake, which included the WS protocol, which is then injected into any
other browser to bypass login and get the same session as logged in before. This
session continues until no one logs it out. Figures 14 and 15 demonstrate the WS
retrieval from the headers.

Fig. 14. Selecting follow then TCP stream

https://online-journals.org/index.php/iTDAF

 70 IETI Transactions on Data Analysis and Forecasting (iTDAF) iTDAF | Vol. 2 No. 2 (2024)

Nadeem et al.

Fig. 15. Handshake header containing sec-web socket-protocol (secure token)

This indicates how someone can easily bypass authentication if some legit user is
using the same network.

7	 RESEARCH	GAPS

The authors, after a comprehensive literature review and testing, highlight the
following study gaps, which could be further investigated to improve the security of
web socket applications.

7.1	 Comprehensive	threat	models

Although most study focus on individual attacks such as XSS and MITM, there
is a dearth of comprehensive threat models that incorporate a broad spectrum of
potential vulnerabilities in WS communication.

Implication: By developing a comprehensive threat model, one can gain a
deeper understanding of the interplay between different threats and how to collec-
tively counteract them.

Implication: By developing a comprehensive threat model, one can gain a
deeper understanding of the interplay between different threats and how to collec-
tively counteract them.

7.2	 Standardization	and	best	practices

While there are suggestions and recommended methods, there is currently no
globally recognized standard that is expressly designed for WS security.

Implication: The establishment of standardized protocols and processes can
facilitate the consistent implementation of secure WS communication across various
apps by developers.

https://online-journals.org/index.php/iTDAF

iTDAF | Vol. 2 No. 2 (2024) IETI Transactions on Data Analysis and Forecasting (iTDAF) 71

Review Analysis of Web Socket Security: Case Study

7.3	 Performance	vs.	security	trade-offs

There is a scarcity of studies on the trade-offs that occur when balancing perfor-
mance and security in WS implementations. Certain security measures may impose
latency or overhead that can have a negative impact on real-time communication.

Implication: Examining and enhancing these compromises can assist in
achieving a balance between security and performance, especially for activities
such as high-frequency trading, gaming, or real-time collaboration tools.

7.4	 Advanced	authentication	mechanisms

Although there is extensive study on fundamental authentication mechanisms,
further investigation is required for sophisticated techniques such as biometrics,
zero-knowledge proofs, and continuous authentication, specifically in relation to
web sockets.

Implication: Implementing advanced authentication methods can improve
security measures without causing substantial negative effects on user experience
or system performance.

7.5	 The	influence	of	emerging	technologies

There is a lack of comprehensive study on the influence of new technologies such
as blockchain, quantum computing, and AI on WS security.

Meaning: Gaining a comprehensive understanding of how these technologies
can be utilized or present potential risks to WS communication is essential for ensur-
ing the long-term effectiveness of security measures.

8	 COMPARATIVE	ANALYSIS

A comparative study of WS security review papers offers important information
on how security protocols and techniques have changed over time. It can be found
and shared by looking at different study, such as coverage of security concerns and
useful suggestions for developers. Recurrent flaws, on the other hand, point to areas
that require more study, including a dearth of empirical data and thorough mitiga-
tion plans. This study enables us to identify both well-addressed and neglected facets
of WS security. The authors have included Table 2 below that lists the advantages
and disadvantages of every reviewed paper.

Table 2. Weaknesses in the existing literature

Sr.# Paper Name Strengths Weaknesses

1 “The Web Socket Protocol and Security”
by Juuso Karlström (2016)

Comprehensive analysis of Web Socket
protocol and security vulnerabilities; practical
recommendations.

Limited coverage on emerging threats; lack
of detailed case studies and empirical data.

2 “Web Socket Security Analysis”
by Jussi-Pekka Erkkilä (2012)

Detailed examination of Web Socket security
issues; development of a custom testing tool;
practical focus.

Inadequate coverage of long-term trends
and emerging threats.

(Continued)

https://online-journals.org/index.php/iTDAF

 72 IETI Transactions on Data Analysis and Forecasting (iTDAF) iTDAF | Vol. 2 No. 2 (2024)

Nadeem et al.

Table 2. Weaknesses in the existing literature (Continued)

Sr.# Paper Name Strengths Weaknesses

3 “Web Socket Adoption and the
Landscape of the Real-Time Web”
by Paul Murley et al. (2021)

Extensive data collection and analysis;
identification of misconfigurations and
malicious uses; public dataset.

Limited performance impact analysis;
inadequate coverage of long-term trends
and emerging threats.

4 “Security Testing of Web Sockets”
by Harri Kuosmanen (2016)

Detailed examination of security
vulnerabilities; practical testing scenarios;
comprehensive methodological approach.

Lack of automation in the custom tool;
limited coverage of emerging threats
and economic impact analysis.

5 “Web Socket Security” by Vanessa Wang,
Frank Salim, Peter Moskovits (2013)

Comprehensive security overview; clear
explanation of protocol design; practical
recommendations.

Limited empirical data; lack of coverage
on emerging threats; absence of detailed
implementation examples.

9	 FUTURE	WORK	DIRECTIONS

In the changing WS security environment, ongoing study is required to counter
new attacks and enhance current security measures. We review current methods
and point up their shortcomings before proposing a number of future directions for
study to improve WS security even more.

9.1	 Developing	advanced	anomaly	detection

Systems that utilize machine learning and artificial intelligence can greatly
improve the detection and mitigation of new and changing threats. These systems
must possess the ability to analyze and respond to WS communications in real-time
in order to minimize any disruptions.

9.2	 Advanced	authentication	protocols

While current authentication procedures provide some level of security, there is
a need for more robust and adaptable protocols. Future investigations should give
priority to studying multi-factor authentication and continuous authentication solu-
tions that verify user identification during the entire session rather than just during
the first phase.

The improvement of encryption standards for WS connections is absolutely nec-
essary in order to successfully prevent data breaches and reduce the risk of MITM.
There is a need for study to examine lightweight encryption solutions that can retain
high performance without compromising security.

9.3	 User	agent	security

The security of WS connections is significantly influenced by user agents, such as
web browsers and software programs. It is recommended that future study prioritize
the development of best practices and recommendations for user agent developers
to effectively manage WS security protocols. This encompasses the implementa-
tion of security measures such as proactive vulnerability patching, resilient WS API
security, and stringent-origin restrictions.

https://online-journals.org/index.php/iTDAF

iTDAF | Vol. 2 No. 2 (2024) IETI Transactions on Data Analysis and Forecasting (iTDAF) 73

Review Analysis of Web Socket Security: Case Study

9.4	 Cross-site	web	socket	security	(CSWS)

The act of cross-site web socket hijacking (CSWSH) continues to pose a substantial
risk. Subsequent efforts should focus on formulating all-encompassing approaches
to thwart such assaults, including improved methods of segregating data, secure
management of cookies, and strengthened validation processes on the server side.

9.5	 Standardization	and	compliance

The use of defined security frameworks and compliance rules is necessary for
WS implementations. Research should aim to further the development of these
standards, guaranteeing that all WS-based apps strictly comply with a fundamental
security protocol in order to avoid vulnerabilities.

10	 CONCLUSION

Web sockets have emerged as a critical technology for enabling immediate, two-
way communication over the internet, significantly improving user experiences
in a variety of online applications. WSs, while beneficial, provide security issues
that necessitate strong safeguards against numerous threats, such as XSS, CSWSH,
and MITM attacks. This review article provides a thorough study of the WS secu-
rity environment, analyzing major study contributions since 2015. The study eval-
uates existing security measures and their effectiveness in tackling security risks by
comparing diverse methodologies and identifying common faults. Furthermore, the
study exposes the inadequacies and limitations of present methodologies, providing
useful insights into the areas that require further examination and improvement. In
anticipation, the paper provides potential study options for improving WS security.
These include the development of sophisticated anomaly detection systems based
on machine learning, improved authentication techniques, and stronger encryption
standards created specifically for WS connections. The significance of user agents
is also emphasized, along with suggestions for adopting solid security measures.
Emphasizing the importance of CSWS, standards, and user education in develop-
ing a more secure WS environment. To encourage the development of stronger and
more secure real-time web apps, the study community should focus on these key
areas. This ensures the continued dependability and security of connections.

11	 REFERENCES

 [1] J.-P. Erkkilä, “Web socket security analysis,” 2012.
 [2] M. Shema, S. Shekyan, and V. Toukharian, “Hacking with web sockets,” BlackHat

USA, 2012.
 [3] R. R. Ganji et al., “HTML5 as an application virtualization tool,” in 2012 IEEE 16th

International Symposium on Consumer Electronics, 2012, pp. 1–4. https://doi.org/10.1109/
ISCE.2012.6241695

 [4] V. Wang, F. Salim, and P. Moskovits, “The definitive guide to HTML5 web socket,” vol. 1,
New York: Apress, 2013. https://doi.org/10.1007/978-1-4302-4741-8

 [5] Web Sockets Standard. (2024, January 24). [Online]. Available: http://dev.w3.org/html5/
WebSockets/

https://online-journals.org/index.php/iTDAF
https://doi.org/10.1109/ISCE.2012.6241695
https://doi.org/10.1109/ISCE.2012.6241695
https://doi.org/10.1007/978-1-4302-4741-8
http://dev.w3.org/html5/WebSockets/
http://dev.w3.org/html5/WebSockets/

 74 IETI Transactions on Data Analysis and Forecasting (iTDAF) iTDAF | Vol. 2 No. 2 (2024)

Nadeem et al.

 [6] R. M. Lerner, “At the forge: Communication in HTML5,” Linux Journal, vol. 2011, no. 202,
p. 7, 2011.

 [7] C. A. Gutwin, M. Lippold, and T. C. Nicholas Graham, “Real-time groupware in the
browser: Testing the performance of web-based networking,” in Proceedings of the
ACM Conference on Computer Supported Cooperative Work, CSCW, 2011, pp. 167–176.
https://doi.org/10.1145/1958824.1958850

 [8] J. Bai, W. Wang, M. Lu, H. Wang, and J. Wang, “TD‐WS: A threat detection tool of web
socket and web storage in HTML5 websites,” Security and Communication Networks,
vol. 9, no. 18, pp. 5432–5443, 2016. https://doi.org/10.1002/sec.1708

 [9] C. Schneider, “Cross‐site web socket hijacking,” 2013. [Online]. Available: https://
christian-schneider.net/blog/cross-site-websocket-hijacking/ [Accessed: May. 05, 2019].

 [10] I. Fette and A. Melnikov, “RFC 6455 the WebSocket protocol,” RFC editor, 2011. https://
doi.org/10.17487/rfc6455

 [11] P. Murley et al., “Web socket adoption and the landscape of the real-time web,” in
Proceedings of the Web Conference 2021 (WWW ’21), 2021, pp. 1192–1203. https://doi.
org/10.1145/3442381.3450063

 [12] T. Wirasingha and N. Ruwan Dissanayake, “A survey of WebSocket development
techniques and technologies,” in Professional Integration for Secure Nation, vol. 9,
2016, pp. 1–9.

 [13] Comet Daily. (2008, July 4). Independence Day: HTML5 web socket liberates comet from
hacks. [Online]. Available: http://cometdaily.com/2008/07/04/html5-WebSocket/

 [14] V. Chopra, Web Socket Essentials–Building Apps with HTML5 Web Socket. Birmingham,
UK: Packt Publishing Ltd., 2015.

 [15] M. Hribernik and A. Kos, “Secure WebSocket based broker and architecture for connect-
ing IoT devices and web based applications,” IPSI Transactions on Advanced Research,
vol. 16, no. 1, 2020.

 [16] M. Howard and S. Lipner, The Security Development Lifecycle, vol. 8, Redmond:
Microsoft Press, 2006.

 [17] Web APIs, “The web socket API (Web Sockets),” MDN. [Online]. Available: https://
developer.mozilla.org/en-US/docs/Web/API/WebSockets_API

 [18] K. Harri, “Security testing of WebSockets,” Thesis, JAMK University of Applied
Sciences, 2016.

 [19] G. L. Muller, “HTML5 web socket protocol and its application to distributed computing,”
arXiv Preprint arXiv:1409.3367, pp. 1192–1203, 2014.

 [20] P. Murley et al., “Web socket adoption and the landscape of the real-time web,” in
Proceedings of the Web Conference 2021, 2021. https://doi.org/10.1145/3442381.3450063

 [21] S. Paudel, “Vulnerable web applications and how to audit them: Use of OWASP Zed
attack proxy effectively to find the vulnerabilities of web applications,” Bachelor thesis,
Oulu University of Applied Sciences, 2016.

 [22] S. Guan, W. Hu, and H. Zhou, “Real-time data transmission method based on web socket
protocol for networked control system laboratory,” in 2019 Chinese Control Conference
(CCC), 2019, pp. 5339–5344. https://doi.org/10.23919/ChiCC.2019.8865690

 [23] S. Ghasemshirazi and P. Heydarabadi, “Exploring the attack surface of Web Socket,”
arXiv Preprint arXiv:2104.05324, 2021.

 [24] R. M. Wibowo and A. Sulaksono, “Web vulnerability through Cross Site Scripting (XSS)
detection with OWASP security shepherd,” Indonesian Journal of Information Systems,
vol. 3, no. 2, pp. 149–159, 2021. https://doi.org/10.24002/ijis.v3i2.4192

 [25] OWASP. [Online]. Available: https://owasp.org
 [26] D. Omeiza and J. Owusu-Tweneboah, “Web security investigation through pen-

etration tests: A case study of an educational institution portal,” arXiv Preprint
arXiv:1811.01388, 2018.

https://online-journals.org/index.php/iTDAF
https://doi.org/10.1145/1958824.1958850
https://doi.org/10.1002/sec.1708
https://christian-schneider.net/blog/cross-site-websocket-hijacking/
https://christian-schneider.net/blog/cross-site-websocket-hijacking/
https://doi.org/10.17487/rfc6455
https://doi.org/10.17487/rfc6455
https://doi.org/10.1145/3442381.3450063
https://doi.org/10.1145/3442381.3450063
http://cometdaily.com/2008/07/04/html5-WebSocket/
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://doi.org/10.1145/3442381.3450063
https://doi.org/10.23919/ChiCC.2019.8865690
https://doi.org/10.24002/ijis.v3i2.4192
https://owasp.org

iTDAF | Vol. 2 No. 2 (2024) IETI Transactions on Data Analysis and Forecasting (iTDAF) 75

Review Analysis of Web Socket Security: Case Study

 [27] T. Dąbrowski, “Using spring boot for web socket implementation with STOMP,”
Toptal Engineering Blog, 2019. [Online]. Available: https://www.toptal.com/java/
stomp-spring-boot-WebSocket

 [28] Wamp-proto.org/intro.htm. [Online]. Available: https://wamp-proto.org/intro.htm
 [29] V. Wang, F. Salim, and P. Moskovits, “The web socket protocol,” in The Definitive Guide to

HTML5 Web Socket, 2013, pp. 33–60. https://doi.org/10.1007/978-1-4302-4741-8_3
 [30] J. Karlström, “The web socket protocol and security: Best practices and worst weaknesses,”

MS thesis, University of Oulu, Department of Information Processing Science, 2016.
 [31] N. Gibbins, “Cross origin resource sharing,” University of Southampton, 2016. https://

edshare.soton.ac.uk/20595/

12	 AUTHORS

Malik Muhammad Nadeem is with the Department of Cyber Security,
Riphah Institute of Systems Engineering, Riphah International University,
Islamabad, Pakistan.

Yousaf Raza is with the Department of Cyber Security, Riphah Institute of
Systems Engineering, Riphah International University, Islamabad, Pakistan.

Dr. Ahthasham Sajid is with the Department of Cyber Security, Riphah Institute
of Systems Engineering, Riphah International University, Islamabad, Pakistan
(E-mail: ahthasham.sajid@riphah.edu.pk).

Hamza Razzaq is with the Department of Cyber Security, Riphah Institute of
Systems Engineering, Riphah International University, Islamabad, Pakistan.

Rida Malik is with the Department of Cyber Security, Riphah Institute of Systems
Engineering, Riphah International University, Islamabad, Pakistan.

Dr. Sugandima Vidanagamachchi is with the Department of Computer Science,
Faculty of Science, University of Ruhuna, Matara, Sri Lanka.

https://online-journals.org/index.php/iTDAF
https://www.toptal.com/java/stomp-spring-boot-WebSocket
https://www.toptal.com/java/stomp-spring-boot-WebSocket
https://wamp-proto.org/intro.htm
https://doi.org/10.1007/978-1-4302-4741-8_3
https://edshare.soton.ac.uk/20595/
https://edshare.soton.ac.uk/20595/
mailto:ahthasham.sajid@riphah.edu.pk

