Does the Sentiment Index Help Predict Crude Oil Prices?
DOI:
https://doi.org/10.3991/itdaf.v1i1.32683Keywords:
crude oil price, machine learning, sentiment index, random forest, support vector machine, long short-term memoryAbstract
The price fluctuations in the crude oil market remarkably influence the global economy since crude oil is an essential source of energy and plays a determinant role in most industrial sectors. The tremendous development of social media has generated many applications that can be used for sentiment analysis to improve the prediction of crude oil prices. Many researchers have also used technical indicators to predict oil prices. This study integrated several machine learning approaches—random forest, support vector machine, and long short-term memory—with a dynamic expanding moving window and fixed moving window to forecast one-period-ahead West Texas Intermediate (WTI) spot prices. We assessed the forecasting performance of these models using the root mean squared error and then compared prediction accuracy among the sentiment indicator, the technical indicator, and the lagged values of WTI spot prices using the Diebold–Mariano test. The forecasting simulation and empirical results show that the sentiment indicator is preferable to the technical indicator for forecasting WTI spot prices with machine learning approaches. Interestingly, we also find that using the sentiment indicator provides a better prediction performance than using lagged values of crude oil prices.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Jin Shang, Tamotsu Nakamura, Shigeyuki Hamori

This work is licensed under a Creative Commons Attribution 4.0 International License.
The submitting author warrants that the submission is original and that she/he is the author of the submission together with the named co-authors; to the extend the submission incorporates text passages, figures, data or other material from the work of others, the submitting author has obtained any necessary permission.
Articles in this journal are published under the Creative Commons Attribution Licence (CC-BY What does this mean?). This is to get more legal certainty about what readers can do with published articles, and thus a wider dissemination and archiving, which in turn makes publishing with this journal more valuable for you, the authors.
By submitting an article the author grants to this journal the non-exclusive right to publish it. The author retains the copyright and the publishing rights for his article without any restrictions.