Flexible 3D Printed Molds for Educational Use. Digital Fabrication of 3D Typography

Alejandro Bonnet de León, Jose Luis Saorin, Jorge de la Torre-Cantero, Cecile Meier, María Cabrera-Pardo


One of the drawbacks of using 3D printers in educational environments is that the creation time of each piece is high and therefore it is difficult to manufacture at least one piece for each student. This aspect is important so that each student can feel part of the manufacturing process. To achieve this, 3D printers can be used, not to make pieces, but to make the molds that students use to create replicas. On the other hand, for a mold to be used to make several pieces, it is convenient to make it with flexible material. However, most used material for 3D printers (PLA) is very rigid. To solve this problem, this article designs a methodology that allows the use of low-cost 3D printers (most common in school environments) with flexible material so that each mold can be used to manufacture parts for several students. To print flexible material with low-cost printers, it is necessary to adapt the machine and the print parameters to work properly. This article analyzes the changes to be made with a low cost 3D printer and validates the use of molds in school environments. A pilot test has been carried out with 8 students of the subject of Typography, in the School of Art and Superior of Design of Tenerife. During the activity, the students carried out the process of designing a typography and creating digital molds for 3D printing with flexible material. The designs were made using free 3D modeling programs and low-cost technologies.


3D printers, Filaflex, flexible mold, typography, education

Full Text:


International Journal of Online and Biomedical Engineering (iJOE) – eISSN: 2626-8493
Creative Commons License
Scopus logo Clarivate Analyatics ESCI logo IET Inspec logo DOAJ logo DBLP logo EBSCO logo Ulrich's logo Google Scholar logo MAS logo