Wireless Sensor Networks Topology Model Based on Energy Consumption and Life Cycle

Ruo Jia

Abstract


Regarding the disadvantages of Wireless Sensor Networks such as random node failure, imbalanced network energy consumption, and shorter life cycle etc., the paper proposes an improved evolving model with an overall integration of fault-tolerance topology and network energy consumption, as a fusion mechanism optimizing the original node degree, generation ability and node distance in the model; it also validates the advantages of the improved model in terms of network life cycle, residual energy of node, node spacing and fault tolerance etc. by comparing the model with the optimized model of traditional sensor. With the establishment of WSNs energy consumption model, the paper evaluates the network life cycle and analyses the influence of node spacing and residual energy of node on WSNs, by adopting which as the fitness functions of the model, a scale-free fault tolerance topology evolving model with link deletion mechanism is constructed. The simulation comparison shows that the topology structure of the improved model has significant scale-free characteristics, a balanced network energy consumption and a long network life cycle; it can also effectively increase the fault tolerance and intrusion tolerance of network.

Keywords


wireless sensor networks; scale-free topology; fault tolerance; energy consump-tion; life cycle

Full Text:

PDF



International Journal of Online Engineering (iJOE).ISSN: 1861-2121
Creative Commons License
Indexing:
Web of Science ESCI logo Engineering Information logo INSPEC logo DBLP logo ELSEVIER Scopus logo EBSCO logo Ulrich's logoGoogle Scholar logo Microsoft® Academic Search