
Paper—How Can Transactional Semantics Enhance the Commit Rate of Context-aware Service…

How Can Transactional Semantics Enhance the Commit
Rate of Context-aware Service Composition in Advanced

Pervasive Systems?

https://doi.org/10.3991/ijes.v9i4.25919

Widad Ettazi()1, Hatim Hafiddi1,2, Mahmoud Nassar1

1 ENSIAS, Mohammed V University of Rabat, Rabat, Morocco
2 STRS Lab, INPT Rabat, Morocco
widad.ettazi@um5s.net.ma

Abstract—Context-aware composition of services exhibiting transactional
properties poses several challenges. A major challenge is the transactional
behavior of candidate services which is subject to perpetual change while the
composition is running. Compositions of services displaying transactional prop-
erties must be dynamically adapted at run time to cope with context fluctuations.
By dynamic adaptation, we refer to the ability to alter the composition behavior
in response to changes affecting its execution. We focus on changes impacting
the successful commit rate of transactional service composition. This has led
us to explore the trail of a flexible homeomorphism between alternative behav-
iors. We propose a behavioral adaptation approach that adjusts the behavior of
transactional compositions of services in a proactive and transparent manner.
This strategy is based on the Profiled Task Class concept. A service composition
generator has also been developed for the performance evaluation of components
implementing the behavioral adaptation strategy in order to identify its impact on
the commit rate of CATS compositions.

Keywords—context-awareness, transactional service, behavioral adaptation,
profiled task class, adaptation mechanism, service composition

1	 Introduction

Pervasive computing is characterized by three key characteristics that affect the con-
text in which services and users evolve. First, it focuses on dynamic environments
where available resources change continuously without prior knowledge of their avail-
ability, while in static environments the services provided to users are determined in
advance. Second, it operates through ad hoc environments formed by mobile termi-
nals connected via wireless networks and thus loses its interest in static environments
where the infrastructures are fixed. Third, it is designed for the use of resource-limited
devices. This shift from multi-resource static environments to limited-resource dynamic
environments poses several challenges regarding the execution context of service and
user, and hence impacts the execution cost and the successful commit rate of transac-

iJES ‒ Vol. 9, No. 4, 2021 39

https://doi.org/10.3991/ijes.v9i4.25919
mailto:widad.ettazi@um5s.net.ma

Paper—How Can Transactional Semantics Enhance the Commit Rate of Context-aware Service…

tional services. Furthermore, user requirements can change at any time, thus, altering
the transactional properties of the services involved in the composition. The notion of
context-awareness in the management of transactional services is not yet addressed.
Let’s consider, for example, a simple transactional service that books a room in a hotel.
Current approaches will simply commit the operation if the required room is available,
whether it is compensable or not. They do not take into consideration contextual infor-
mation such as “a room should be reserved at a hotel that is located nearby the user’s
center of interests” and the user’s transactional requirements such as “hotel reservation
must be compensable”.

Context-aware computing appeared since the 90s driven by the work of [1]. This term
refers to systems capable of perceiving a set of conditions of use in order to adjust their
behavior in terms of providing information and services. According to [2], the defi-
nitions ascribed to a context-aware system do not include all types of context-aware
systems. Indeed, under these definitions, a system that simply collects the context in
order to provide it to an application is not considered a context-aware system. Thus,
the authors believe that “a system is context-aware if it uses context to provide relevant
information and services to the user, where relevance depends on the task requested by
the user”. In context-aware environments, transactions must be able to adjust to sys-
tems that are not necessarily in a perfect environment, for example, that don’t require
a lock of their resources and do not care if transactions run for short periods of time or
longer periods. These systems will operate in a flexible, dynamic environment, but less
reliable and that presents contextual requirements (i.e., requirements and preferences
expressed or implied by the user, connectivity, bandwidth, etc.) that hinder the transac-
tions execution [3], [4], and [5].

Transactional properties are considered extra-functional properties of a service.
In the field of Web Services [40, 41], these properties are generally described by the use
of the WS-Policy language [6]. Other approaches such as [7] and [8] have proposed to
extend the WSDL description to describe the transactional behavior of web services.
Thus, in order to determine the transactional behavior of an elementary service, it is
sufficient to analyze the operations exposed by this service. On the other hand, to deter-
mine the transactional behavior of composite services, preliminary studies have been
reported in [9]. In summary, a composite service which includes transactional aspects
must integrate certain characteristics that are specific to the fields of transactional pro-
cessing and web services namely:

•	 The transactional properties of a composite service can change dynamically, in other
words, the ACID model should not be intuitively adopted.

•	 The composition of the transactional service must take into account the nature of
the participating services which are weakly coupled and have heterogeneous trans-
actional properties.

•	 Users must have the ability to express and alter transactional requirements such as
vitality, compensation and task substitution.

A study of the various works carried out in this field shows that most of the proposed
solutions:

40 http://www.i-jes.org

Paper—How Can Transactional Semantics Enhance the Commit Rate of Context-aware Service…

•	 Do not exploit the re-execution property of participating services which improves
the commit rate of compositions.

•	 Do not offer adaptation techniques to the dynamic change in users’ transactional
requirements.

•	 Do not support dynamic replacement of participating services.

CATS (Context-aware Transactional Service) composition in pervasive environ-
ments typically involves dynamic execution contexts, service unavailability, and
varying user requirements. Therefore, composition techniques of this type of services
should be designed to be proactive. Indeed, context-aware computing envisages satis-
fying user tasks on the fly, thus the time available for the selection and composition of
services is limited compared to the complexity of processing requests. In addition, the
context-aware composition of services exhibiting transactional properties poses several
challenges. A major challenge is the transactional behavior of candidate services which
is subject to perpetual change while the composition is running. Service composition
strategies must also take into account the transactional properties of services (i.e. ACID
model) by adjusting them in relation to the execution context.

Service compositions need to be adapted at run time based on context fluctuations.
From this perspective, a first approach consists in replacing the failing services. How-
ever, selecting services while composition is running can delay and even interrupt the
process. To cope with this problem, the compositions of alternative services must be
selected simultaneously when constructing the initial composition that fits the user’s
task. Existing service selection algorithms focus on selecting a single service composi-
tion. In this paper, we aim to select several compositions of alternative services, which
allow dynamic binding of services at runtime.

In this paper, we proposed a novel approach for context-driven transactional service
composition based on transactional semantics of service description and context infor-
mation. The proposed approach is based on behavioral adaptation strategy which
is focused on (i) changes having an impact on the commit rate of the transactional
composition of services, in particular, (ii) changes in the transactional needs of users,
(iii) changes in the services context due to the dynamicity of pervasive environments
(e.g., mobility of users, availability of services, etc.) and (iv) alteration of the trans-
actional properties of the services participating in the composition. We used different
adaptation mechanisms to leverage the behavioral adaptation strategy by introducing
the profiled task class concept.

This article is organized as follows. The section II will be devoted to review some
basic concepts and related work. In section III, we present the transactional features of
composite services and introduce the most prominent adaptation mechanisms. Section
IV details the proposed behavioral adaptation strategy and exhibits CATS specification
and the profiled task class concept. The section V presents encouraging experimental
results demonstrating our proposition. Finally, we conclude in the section VI.

iJES ‒ Vol. 9, No. 4, 2021 41

Paper—How Can Transactional Semantics Enhance the Commit Rate of Context-aware Service…

2	 Literature review

The works presented in this section represents existing approaches for reliable exe-
cution of context-aware composite services, particularly composite services exhibiting
transactional properties. Due to the absence of an accepted test bench for the adaptation
of composite services, and the complexity and specificities of the implementation of
each approach, it is difficult to perform a reliable comparative analysis quantitatively.
We largely limit the comparison to a qualitative analysis of the different approaches.

Authors in [10] proposed a transactional model called FENECIA which includes
forward recovery by re-executing and replacing the service, backward recovery by
compensating and the concept of vital and non-vital services. If a vital service fails and
it cannot be re-executed or has no alternate services, the execution of the composite
service is interrupted. In contrast, running a composite service can be successful even
if non-vital services have failed. Another work in [11] proposed another framework
called FACTS to ensure the adaptability of composite services. It is a hybrid approach
that combines exception handling and transactional properties. When a failure occurs
at run time, FACTS first uses exception handling strategies to try to fix it. If the failure
cannot be defined, it brings back the composite service to a consistent state using com-
pensation mechanisms. The authors in [12] developed a new model for context-aware
transactions in the context of mobile services. This model provides a relaxed set of
transaction correctness criteria called SACReD (Semantic Atomicity, Consistency,
Resiliency, Durability) and a supporting protocol. Unlike ACID criteria, SACReD does
not impose an isolation policy, thus allowing transactions to be partially committed.
The resiliency property allows alternative services to be executed when a service fails
or does not meet the required context. In [13], the authors proposed the TQoS approach
for the selection and composition of services according to their transactional require-
ments, QoS characteristics and user preferences. After each service selection, the cur-
rent transactional property of the resulting composite service is calculated and a service
substitution, in the case of failure, can be performed. The authors in [14] introduced a
framework for reliable replacement in the context of transactional services composition
driven by QoS parameters. The framework takes into consideration the QoS parameters
of the reselection service, transactional risk and the cost of compensation during the
replacement process. The utility function is calculated for each candidate service and
the path of the optimal service to be replaced is selected again. Reference [15] pre-
sented a context-driven approach to adapting transactional web services. The authors
have defined transactional properties for web services that allow their composition and
execution via policies. This approach supports the management of exceptions through
the use of adaptation strategies. In [16], the authors proposed to integrate business
transaction recovery workflows and the concept of context-awareness. When a busi-
ness transaction exception is detected, the assessment of the constraint condition is
performed. The exception is ignorable if the constraint is satisfied and the successive
service will be invoked. The recovery supported strategies are: re-execution, substi-
tution, user interaction and compensation. The strategy described by [17] takes into
account the user’s directives in order to propose several recovery plans. Users manually

42 http://www.i-jes.org

Paper—How Can Transactional Semantics Enhance the Commit Rate of Context-aware Service…

choose the desired recovery plan among the plans automatically calculated and clas-
sified by the system. It supports the following user directives: (i) developers define a
set of behavioral correctness properties that must be maintained at runtime, as well as
compensation costs; (ii) users provide criteria for choosing among possible recovery
plans, depending on the plan duration, the compensation cost, etc. (iii) users manually
choose the desired recovery plan among the plans automatically calculated, classified
and proposed by the system. Reference [18] presented a method to find the optimal
solution for composing transactional web services using a dependency graph and 0-1
linear programming. The approach proposed in [19] allows selecting several candidate
services that can be executed sequentially in order to improve the composite service
QoS. To do this, the composition of services is modeled as a search problem of the
shortest path satisfying certain constraints in a directed acyclic graph (DAG). Other
works have proposed several heuristic algorithms [20], [21], and [22] to reduce the
complexity of search time in local or global search related to web services composi-
tion. In [23], the authors proposed a new approach that combines the use of genetic
algorithms and Q-learning to find the optimal composition. In [24], the composition
of services taking into account QoS and transactional properties is modeled as a path
construction problem in a directed acyclic graph. Transactional properties ensure a reli-
able execution of services. Graph vertexes represent the candidate services and arcs
describe the links between the candidates of two classes of adjacent services. A recent
approach in [25] has been proposed to solve the problem of web services composition
taking into account conflicts and dependencies between services. Reference [26] pro-
posed DPSA (Distributed Partial Selection Algorithm) which is a service composition
algorithm using a partial selection approach. This algorithm first performs a validation
of the local QoS constraints where candidate services violating QoS constraints are
eliminated at the level of each abstract service in the composition. The authors in [27]
introduced EQSA (Energy-centered and QoS-aware services selection) which is a ser-
vice selection algorithm focused on energy and QoS-aware in the context of large-scale
service composition.

Despite the multitude of works that exist in the literature, the adaptability of transac-
tional aspects to context variations remains an open issue. Most adaptation approaches
use a particular adaptation mechanism instead of implementing several adaptation
strategies (i.e. Dynamic binding, Retry/Redo, Substitution, Dynamic reconfiguration,
Behavioral adaptation, Dynamic adaptation of transactional requirements). In addition,
the studied approaches do not fully exploit the transactional properties, particularly the
Atomicity property (i.e., strict, semi-atomicity, semantic, relaxed) and the behavior of
the underlying transactional services (i.e., Vital, Replayable, Replaceable, Compensa-
ble) in order to offer proactive and efficient adaptation mechanisms (e.g., adaptation
graph, AI planning, branch-and-bound).

3	 CATS composition

A composite service can be considered as a structured transaction where services are
sub-transactions and the interactions are transactional dependencies [28]. Thus, running

iJES ‒ Vol. 9, No. 4, 2021 43

Paper—How Can Transactional Semantics Enhance the Commit Rate of Context-aware Service…

a composite service requires relying on transaction models that are generally distrib-
uted, complex, and long-running. In addition, the composite service must support the
transactional properties of the participating services. Generally, traditional approaches
that guarantee ACID properties are designed for tightly coupled environments and
short-lived transactions; which is still not the case in the field of web services. Thus, in
this context, the examination of ACID properties is necessary.

3.1	 Transactional features of a composite service

Since the services participating in the composition are weakly coupled, each partic-
ipating service controls the visibility level of the exposed resources:

•	 Compensable services immediately commit the requested task, their effects will be
visible to the system and the associated resources will be released, even before the
global commit of the composition. In case of composition abort, compensation oper-
ations will be initiated in order to semantically cancel the effects of the executed
task. In this case, atomicity and semantic isolation are ensured

•	 Non-compensable services lock the resources requested by the composite service,
until the latter decides either to commit and make visible the effects, or to cancel
already made reservations. When the composite service decides to commit, the par-
ticipating services immediately commit and make visible the effects of the executed
tasks. Thus, non-compensable services preserve strict atomicity as well as strict
isolation.

Consistency is maintained by respecting the integrity constraints that depend on the
composite service. Composition can be successful in several ways, and maintaining
consistency is a characteristic that must be defined by the designer of the composite ser-
vice. Durability in transactional systems refers to the persistence and traceability of the
process. Each participating service is responsible for preserving the traceability of its
internal process and the composite service must preserve the traceability of the overall
process. In the remainder of this article, we are specifically interested in the property
of Atomicity. This property plays a very important role in the commit process of trans-
actional services and can significantly impact composition execution, and therefore the
performance of context-aware systems.

From what has been presented, a composite service exhibiting transactional proper-
ties must:

•	 Offer to users the opportunity to express their transactional requirements.
•	 Respect the autonomy of the participating services; it must not place any constraints

on the services participating in the composition.
•	 Adapt to execution context variations by ensuring selection and dynamic replace-

ment of services.
•	 Adapt to the dynamic change in user requirements.
•	 Take into consideration that some participating services may be composite as well.

These characteristics show that the transactional properties of composite services
are variable, and can change dynamically during their execution, hence the need for

44 http://www.i-jes.org

Paper—How Can Transactional Semantics Enhance the Commit Rate of Context-aware Service…

flexibility and adaptability in designing solutions that ensure correct execution of CATS
compositions.

3.2	 Adaptation mechanisms

Adaptation mechanisms refer to the techniques used to adapt context-aware systems.
They represent a large subject of research. In this paper, we focus on the following
adaptation mechanisms: dynamic binding, retry/redo, substitution, dynamic reconfig-
uration, behavioral adaptation, and dynamic adaptation of transactional requirements.

In dynamic binding, the user task is defined as a set of abstract activities, and several
services are selected as potential candidates to satisfy each activity [29]. In the execu-
tion phase, the selected services are linked to abstract activities according to changes in
the context. Service selection is particularly interesting in this case, since it is possible
to provide several alternative services for each abstract activity described in the user
task. The retry technique is used to invoke the service that failed multiple times, while
redo is utilized to rerun the same service using different input parameters. The substi-
tution mechanism consists of replacing the failed service with another service that has
equivalent functionality and that meets the execution context requirements. The main
difference between dynamic binding and substitution is that the latter allows services to
be replaced with alternative services once a service failure or a context change occurs.
Dynamic reconfiguration represents a large class of adaptation mechanisms. It includes
resources reconfiguration, parameters reconfiguration and service composition recon-
figuration [30]. The behavioral adaptation mechanism consists of performing the com-
position using an alternative behavior. Alternative behaviors are generally obtained by
modifying the composition patterns that structure the service compositions and/or by
modifying the service granularity (i.e. by merging fine-grained services with coarse-
grained services or the opposite). Dynamic adaptation of transactional requirements
refers to the ability of a system to change the behavioral profile of its transactions. In
fact, during execution, if a transactional service cannot be committed, the user may be
allowed to modify the transactional service profile.

4	 Behavioral adaptation strategy

In this section, we present the behavioral adaptation strategy which supports the
policy-based adaptation approach of CATS services. First, we will introduce the basic
concepts associated with this adaptation technique. Then, we will define the mechanism
used to ensure behavioral adaptation of CATS services and the underlying adaptation
strategies.

4.1	 CATS specification

Our proposal allows a dynamic configuration of transactional properties during
execution. The proposed model, as designed, is based on the Open Nested Transac-
tion model [31], [32], and [33]. The adaptation aspect is obtained by associating each

iJES ‒ Vol. 9, No. 4, 2021 45

Paper—How Can Transactional Semantics Enhance the Commit Rate of Context-aware Service…

transaction with an environment descriptor. An environment descriptor refers to the
resources state and the conditions of services and user’s runtime environment. An envi-
ronment descriptor aggregates a set of context descriptors. These descriptors represent
a wide range of contextual information related to the user, the transactional service,
and the execution environment, that can be quantified and queried. Thus, the context
descriptor is a representation of the variable parameters that can influence the execution
of a transactional service. In the context of pervasive environment, these parameters
depend on the wireless network, communication speed, connection status, memory
and cache size, battery capacity, location, user mobility, etc. Each parameter can be
qualified by variable states, for instance, the possible states for bandwidth are “high”,
“medium”, “low”, and for the memory, “available”, “half”, “full”. Hence, we propose
to define a CATS service as a set of activities, each activity can be executed by compo-
nent transactional services (see Figure 1).

Fig. 1. Succinct illustration of CATS service structure

By analogy to the proposed structure, we model a CATS service using a tree trans-
action model where internal nodes represent the activities and leaf nodes are the com-
ponent transactional services. Each activity has a primary transactional service and a
set of alternative transactional services, which are associated each with an environment
descriptor. In our transaction model, an activity is committed if one of the associated
component transactional services (primary/alternative) is successfully executed. How-
ever, the activity fails, if none of the associated services is committed. Each activity
can have alternative activities; in this case, it is said to be replaceable. An alternative
activity is only executed if its primary activity is not committed or if a context change
or a particular event occurs. All activities can be critical or non-critical. A CATS service
can only be committed if all its critical activities have been committed. An activity is
said to be structured if it consists of more than one activity.

A structured activity is modeled by a tree of activities and services. A service can be:

46 http://www.i-jes.org

Paper—How Can Transactional Semantics Enhance the Commit Rate of Context-aware Service…

•	 Compensable or non-compensable: a compensable service offers two operations.
The first operation enables the acquisition of the resource exposed by the service; the
second one allows the cancellation of the first operation effects. A non-compensable
service allows reserving a resource during a determined period, and to commit or
cancel the requested reservation.

•	 Replayable or not replayable: in case of failure, the reexecution of services increases
the commit rate, these services are characterized by a number of authorized attempts
and a delay between these attempts.

•	 Replaceable or non-replaceable: each participating service can have alternative
services.

•	 Critical or non-critical: An uncommitted critical service requires the abort of CATS
composition and other component services. In contrast, the composition can be com-
mitted even if a non-critical service fails.

4.2	 The proposed mechanism

Context monitoring is an essential step in adapting transactional services to the con-
text, since it is possible to determine the required context for a correct execution of
transactional services, thus ensuring that the violation of contextual requirements is
detected and adaptation actions are triggered accordingly. In this sense, the monitoring
of context should be carried out a priori and a posteriori of transactional service selec-
tion. We refer to this approach as proactive context monitoring. It is used to determine
the execution context of all the selected transactional services. On the basis of proactive
monitoring, dynamic binding allows to choose the best transactional service (i.e., in
terms of qualified context descriptor) to associate for each abstract activity in the user
task. Therefore, the other services are detected and rejected simultaneously. Figure 2
outlines the different components involved in the execution of CATS services.

Fig. 2. Adaptation mechanism architecture

iJES ‒ Vol. 9, No. 4, 2021 47

Paper—How Can Transactional Semantics Enhance the Commit Rate of Context-aware Service…

As depicted in Figure 3, CATS service composition API takes as input the user
request, which includes the description of the user’s task and all contextual and trans-
actional requirements.

Fig. 3. CATS service composition API

To accomplish the required task, CATS Composition API goes through the following
steps:

•	 The User Request Parser component analyzes the specification of the user task and
determines its underlying abstract activities and the set of contextual and transac-
tional constraints imposed on the entire task.

•	 The User Request Manager component invokes the Transactional Service Selector
to acquire a set of candidate transactional services for each activity in the task.

•	 In case of failure, the selection algorithm chooses a set of alternative services for
each activity, which meet contextual and transactional constraints.

•	 Based on the highest ranked transactional services, the Transactional Service Com-
position Generator creates an executable composition capable of satisfying the user
task.

Service substitution is triggered when one or more running services don’t meet the
required context. Alternative services can be determined in two ways. First, based on
the previously selected services; if these services are no longer available or their envi-
ronment descriptors don’t correspond to the current context, a second solution can be
provided. This solution consists of performing a selection of services that checks the
current context for the failed activity (or activities). For each activity, the selected ser-
vices must have an environment descriptor that corresponds to the execution context.
Context-driven service substitution is more appropriate when we are dealing with the
execution of long-running tasks in very dynamic environments, such that: (i) new ser-
vices can join the environment while the execution of the user task, and (ii) the discov-
ery duration of the service is negligible compared to the execution time of the user task.

48 http://www.i-jes.org

Paper—How Can Transactional Semantics Enhance the Commit Rate of Context-aware Service…

To perform the substitution of services in so-called pervasive environments, we use the
Dynamic Binding technique.

Dynamic binding [34] aims to associate a service by activity among those previously
selected according to their execution contexts and the associated transactional profile,
thus guaranteeing an optimal commit rate for the task composition. To do this, dynamic
binding requires a preliminary phase of context monitoring, which determine the ser-
vices execution context. Hence, dynamic binding checks whether a service provides an
environment descriptor similar or different from the one previously associated. If many
services meet this condition, the service that provides the most exact similarity function
is associated with the considered activity.

The adaptation process, which we present, has been implemented around a number
of interfaces. These interfaces are used to ensure a flexible, reusable and exchange-
able character of our architecture. The implementations of these are based on the
design pattern “strategy pattern” to provide a flexible strategy adjustment, based on a
configuration file. The component diagram shown in Figure 4 describes CATS service
adaptation mechanism.

Fig. 4. Components implementing CATS service adaptation mechanism

4.3	 Profiled task class concept

In the previous section, we proposed an approach for adapting transactional services
to Context. However, the proposed approach is not sufficient to ensure that the men-
tioned requirements are met during the execution of services composition, since the
environment descriptors of the services may change at runtime. To deal with this issue,

iJES ‒ Vol. 9, No. 4, 2021 49

Paper—How Can Transactional Semantics Enhance the Commit Rate of Context-aware Service…

we present an adaptation approach for CATS composition based on two adaptation
strategies. First, the substitution of transactional services, which consists of replacing
the participating services by alternative services. When the service substitution fails,
we proceed to the second adaptation strategy, which consists of adapting the behavior
of the composition without altering the user’s task. This strategy is based on the concept
of “Task Class” [35], which we extend by the concept of “Profiled Task Class” to define
the set of abstract compositions of transactional services which are functionally equiva-
lent but showing different behaviors. Figure 5 displays the global adaptation approach.

Fig. 5. Illustration of CATS adaptation approach

The behavioral adaptation strategy aims to accomplish the user’s task using an alter-
native abstract composition to accomplish the required task. The concept of “Profiled
Task Class” starts from the idea that the user task can be performed in different ways
depending on the profile associated with each activity. This is possible either by chang-
ing the order in which the abstract activities are executed (i.e., according to their criti-
cality), or by dividing coarse-grained abstract activities into fine-grained activities (i.e.,
if the activity is replaceable), or by merging fine-grained activities into coarse-grained
abstract activities (i.e., according to the criticality of the activity) while respecting the
profile assigned to each activity in the user task. To do so, we propose to explore the
“Profiled Tasks Class” associated with the user task and to analyze the available abstract
compositions. Specifically, the proposed strategy consists of building a sub-composition
that is functionally equivalent to the failed one and behaves differently.

The behavioral comparison of two abstract compositions is achieved by trans-
forming these abstract compositions into graphs. Indeed, the graphs represent a fairly
robust data structure which can have several uses, in particular the specification of
compositions behavior. Thus, we can formulate the problem of sub-compositions com-
parison as subgraphs matching search problem. Such correspondences are generally
established by the detection of subgraphs isomorphism [36]. The latter allows to deter-
mine the exact correspondence between subgraphs, where only the order of the abstract
activities changes. However, when the service substitution fails, changing the order
of the activities does not provide any workaround. For this reason, we use the sub-
graph correspondence approach presented by [35]. The author proposed to use another
technique to solve this correspondence problem by adopting flexible correspondence
between subgraphs supported by the technique of “vertex subdivision”. This technique

50 http://www.i-jes.org

Paper—How Can Transactional Semantics Enhance the Commit Rate of Context-aware Service…

is applied using the concept of the “topological minor”. Using graph minor theory [37],
the relationship between a subgraph and its topological minor can be described as a
homeomorphism of subgraphs with disjoint vertices vdSH (vertex disjoint Subgraph
Homeomorphism) [38]. The construction of the different combinations in the same
class of tasks is dictated by the behavioral profile of each activity forming this task.
These alternative compositions are generated using three main methods:

•	 By changing the order in which abstract activities are executed, critical activities
are given higher priority and will be executed first depending on their resource con-
sumption and the current execution context.

•	 By dividing coarse-grained abstract activities into fine-grained activities, or by
merging fine-grained activities into coarse-grained abstract activities.

•	 By omitting the activity or the sub-composition of activities that are non-critical, in
case of failure after using the first two methods.

Our approach is based on the assumption that profiled task classes are built gradually
based on learning techniques and user feedback. More precisely, each time a new task
is defined, our middleware platform uses planning techniques to automatically generate
alternative abstract compositions allowing this task to be satisfied according to the user
requirements in terms of functional specifications, the context and transactional seman-
tics of the activities forming the task. Formally, the concept of “Profiled Task Class”
can be defined as follows:

	– GT = (V, E, β) is the graph representing the user’s tasks, V is the set of vertices, E ⸦
V × V: a set of edges and β: V → P is a function which assigns profiles to vertices.

A Profiled Task Class is the set of graphs G = {G1,…, Gn } where each graph:

	– Gi = (Vi , Ei , βi ) with i ϵ [1, n] and (Gi is isomorphic to GT or Gi is a subdivision of GT
or GT is a subdivision of Gi .)

To optimize the commit rate of CATS composition, the adaptation process is based
on two main phases:

Checking the required context: The main coordinator sends a message to each
sub-coordinator to verify the required context for execution. If the current context is
qualified, each sub-coordinator sends a “Yes” message to the main coordinator indicat-
ing that the transactional service can normally be executed. Otherwise, it sends a “No”
message. For more detail regarding CATS commit protocol, we refer to a previous
work [39].

Commit phase: In the previous phase, if one of the sub-coordinators responds that
the current context is not qualified, the decision will be as follows:

	– If the transactional service is replaceable and the current context matches the envi-
ronment descriptor of the alternative service, then the associated alternative service
is executed.

	– If the transactional service is critical, non-replaceable and no alternative sub-
composition in the profiled task classes has been identified, the composition is

iJES ‒ Vol. 9, No. 4, 2021 51

Paper—How Can Transactional Semantics Enhance the Commit Rate of Context-aware Service…

aborted (i.e. in case of failure). In this case, the committed transactional services, if
any, will be compensated.

	– If the transactional service is neither critical nor replaceable, it is simply ignored.

If the current context is qualified, adaptation actions are performed as follows:

	– If the transactional service is replayable, it is re-executed according to the number of
authorized attempts (i.e. in case of failure).

	– If the transactional service is critical and replayable, it is re-executed according to
the number of authorized attempts and the re-execution parameters are updated.

	– If the service is replaceable, the corresponding alternative service is performed.
	– If the service is non-critical, non-replaceable, and non-replayable, it is simply

ignored.

Figure 6 shows the different adaptation actions according to the behavior profile of
each activity in CATS composition.

Fig. 6. CATS composition behavior according to activity profile

5	 Evaluation

We proceed to a performance evaluation of our CATS composition approach. Our
diagnosis was processed on a machine with the following configuration: 2.6 GHz for
the processor, 8 GB of RAM, Windows 7 as the operating system and version 1.8 of
the Java language development kit (JDK 1.8). We considered two simulation scenarios
corresponding to different degrees of complexity. For each of these scenarios, we per-
formed a battery of ten tests to retrieve a significant average of the instrumented param-
eters. Based on the JProfiler tool (version 8.1.1), we obtained the results presented in
Figures 7 and 8.

52 http://www.i-jes.org

Paper—How Can Transactional Semantics Enhance the Commit Rate of Context-aware Service…

Fig. 7. Execution time for five context descriptors by varying the
behavioral profile of activities

Fig. 8. Execution time by varying the number of context descriptors

The test we have performed consists in varying the number of activities between 10
and 50, and the number of context descriptors between 2 and 5; the number of services
per activity has been set at 200. We stipulate that for a given context descriptor, only
one context parameter is considered. For precision reasons, we carry out a battery of
ten tests and we calculate the average value of the obtained results. Figure 7 illustrates
the execution time according to the behavioral profile of activities. We set the number
of context descriptors at 5, we vary the number of activities between 10 and 50 and
the behavioral profile by group of activities: “Critical/Non-Compensable” Activities,
“Non-Critical/Non-Compensable” Activities and “Compensable” Activities.

The obtained results show that the execution time increases (up to 102 ms) with
the number of “Critical/Non-Compensable” Activities, which is an expected result.
Figure 8 illustrates the execution time according to the number of context descriptors.

iJES ‒ Vol. 9, No. 4, 2021 53

Paper—How Can Transactional Semantics Enhance the Commit Rate of Context-aware Service…

We set the number of services per activity at 200 and vary the context descriptors
between 2 and 5; the activities are all “Compensable”. The obtained results obtained
show that the execution time increases (up to 89 ms) depending on the number of
context descriptors, which is also an expected result (i.e. a higher number of context
descriptors requires more processing time). Both figures illustrate that the execution
time increases almost linearly with the number of activities in the composition. In gen-
eral, CATS compositional approach shows very satisfactory performance (less than
102 ms) vis-à-vis spontaneous interactions with users in pervasive environments.

6	 Conclusion and perspectives

One of the main advantages of our work is the exploitation of transactional prop-
erties for adapting “CATS” services. Our approach is based on the use of policies as
an adaptation model. This model is supported by mechanisms such as compensation,
re-execution, substitution, dynamic reconfiguration of policies and dynamic adaptation
of transactional requirements of users (i.e. Dynamic binding, Retry/Redo, Substitution,
Dynamic reconfiguration, Dynamic adaptation of transactional needs). The policy-based
adaptation approach is complemented by a behavioral adaptation strategy that dynam-
ically reconfigures abstract activities of the user task through the concept of “Profiled
Task Class”. Behavioral adaptation represents an important alternative to the substitu-
tion of services widely studied by existing adaptation approaches.

The potential improvements that can be made to our presented work consist in fully
validating our composition adaptation approach experimentally. More precisely, we
are interested in studying the response time of our selection algorithm in relation to
recall, precision and rapidity requirements in pervasive environments. In this sense,
we are interested in defining a utility function that allows determining the best behav-
ioral adaptation solution. In order to improve the correspondence between parameters
and detect the non-symmetrical substitutability between two services, using machine
learning techniques in selection algorithms of alternative compositions will improve
the performances based on methods like random-forest and boosting, or techniques like
MDP (Markov Decision Process) and Q-learning.

7	 References

	 [1]	Schilit, B., Adams, N. Want, R. (1994). “Context-aware computing applications”, Pro-
ceedings of IEEE Workshop on Mobile Computing Systems and Applications, Santa
Cruz, California, pp. 85–90, IEEE Computer Society Press, 1994. https://doi.org/10.1109/
WMCSA.1994.16

	 [2]	Dey, A. K., Abowd, G. D. (2001). “A Conceptual Framework and a Toolkit for Support-
ing the Rapid Prototyping of Context-Aware Applications”, Human-Computer Interaction
(HCI) Journal, vol. 16, pp. 2–4, 2001. https://doi.org/10.1207/S15327051HCI16234_02

	 [3]	Karlsen, R., Jakobsen, A. B. A. (2003). “Transaction service management an approach
towards a reflective transaction service”, 2nd International Workshop on Reflective and
Adaptive Middleware, Rio de Janeiro, Brazil, June 2003.

54 http://www.i-jes.org

https://doi.org/10.1109/WMCSA.1994.16
https://doi.org/10.1109/WMCSA.1994.16

Paper—How Can Transactional Semantics Enhance the Commit Rate of Context-aware Service…

	 [4]	Santos, N., Veiga, L., Ferreira, P. (2004). “Transaction policies for mobile networks”, fifth
IEEE International Workshop on Policies for Dist. Systems and Networks, 2004. https://doi.
org/10.1109/POLICY.2004.1309150

	 [5]	Rouvoy, R., Serrano-Alvarado, P., Merle, P. (2006). “Towards Context-Aware Transaction
Services”, Proceedings of the 6th International Conference on Distributed Applications
and Interoperable Systems (DAIS’06), Bologna, Italy, Lecture Notes in Computer Science,
Springer-Verlag, vol. 4025, pp. 272–288, June 2006. https://doi.org/10.1007/11773887_21

	 [6]	W3C, Web Services Policy 1.5—Framework, 04 September 2007. [Online], Available:
https://www.w3.org/TR/ws-policy/ [Accessed Aug. 15, 2021].

	 [7]	Micalsen, T., Tai, S., Ravellou, I. (2002). “Transactional attitudes: Reliable compositions of
autonomous Web services”, Workshop on Dependable Middleware Based Systems, March
2002.

	 [8]	Pires, P. F., Benevides, M. R., Mattoso, M. (2003). “Building Reliable Web Services Com-
positions”, Web, Web-Services, and Database Systems, LNCS 2593, pp. 59–72, Springer,
2003. https://doi.org/10.1007/3-540-36560-5_5

	 [9]	Gaaloul, W., Bhiri, S., Godart, C. (2004). “Discovering Workflow transactional
behaviour Event-based Log”, 12th International Conference on Cooperative Information
Systems CoopIS’04, 25–29 October 2004, Larnaca, Cyprus. https://doi.org/10.1007/978-3-
540-30468-5_3

	[10]	Lakhal, N. B., Kobayashi, Y., Yokota, H. (2009). “FENECIA: failure endurable
nested-transaction based execution of compo site Web services with incorporated state
analysis”, VLDB Journal, 18(1), pp. 1–56, 2009. https://doi.org/10.1007/s00778-007-0076-8

	[11]	Liu, A., Li, Q., Huang, L., Xiao, M. (2010). “FACTS: A Framework for Fault-Tolerant Com-
position of Transactional Web Services”, Services Computing, IEEE Transactions on, 3(1),
pp. 46–59, Jan 2010. https://doi.org/10.1109/TSC.2009.28

	[12]	Younas, M., and Mostefaoui, S. K. (2010). “Context-aware mobile services transactions”,
24th IEEE international conference on advanced information networking and applications
AINA, Perth, Australia, pp. 705–712, 2010. https://doi.org/10.1109/AINA.2010.157

	[13]	El Haddad, J., Manouvrier, M., Rukoz, M. (2010). “TQoS: Transactional and QoS-Aware
Selection Algorithm for Automatic Web Service Composition”, IEEE Trans. Serv. Comput.,
3(1), pp. 73–85, January 2010. https://doi.org/10.1109/TSC.2010.5

	[14]	Ying, Y., Zhang, B., Zhang, X., Zhao, Y. (2009). “A Self-healing composite Web service
model”, Services Computing Conference, IEEE Asia-Pacific, pp. 307–312, December 2009.
https://doi.org/10.1109/APSCC.2009.5394108

	[15]	Maamar, Z., Benslimane, D., Anderson, A. (2006). “Using Policies to Manage Compos-
ite Web Services”, IEEE IT Professional, 8(5), September/October 2006. https://doi.
org/10.1109/MITP.2006.124

	[16]	Jiuxin, C., Junzhou, L., Zhang, S., Zheng, X., Bo, L., Zhu, G., Zhang, B. (2012).
“A Context-Aware Recovery Mechanism for Web Services Business Transaction”,
pp. 352–359, IEEE SCC 2012.

	[17]	Simmonds, J., Ben-David, S., Chechik, M. (2010). “Guided Recovery for Web Service
Applications”, Proceedings of the 18th ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering, FSE ’10, pp. 247–256, New York, NY, USA, 2010. https://
doi.org/10.1145/1882291.1882328

	[18]	Gabrel, V., Manouvrier, M., Murat, C. (2014). “Optimal and automatic transactional web
service composition with dependency graph and 0-1 linear programming”, In International
Conference on Service Oriented Computing, pp. 108–122. Springer, 2014. https://doi.
org/10.1007/978-3-662-45391-9_8

iJES ‒ Vol. 9, No. 4, 2021 55

https://doi.org/10.1207/S15327051HCI16234_02
https://doi.org/10.1109/POLICY.2004.1309150
https://doi.org/10.1109/POLICY.2004.1309150
https://doi.org/10.1007/11773887_21
https://www.w3.org/TR/ws-policy/
https://doi.org/10.1007/3-540-36560-5_5
https://doi.org/10.1007/978-3-540-30468-5_3
https://doi.org/10.1007/978-3-540-30468-5_3
https://doi.org/10.1007/s00778-007-0076-8
https://doi.org/10.1109/TSC.2009.28
https://doi.org/10.1109/AINA.2010.157
https://doi.org/10.1109/TSC.2010.5
https://doi.org/10.1109/APSCC.2009.5394108
https://doi.org/10.1109/MITP.2006.124
https://doi.org/10.1109/MITP.2006.124
https://doi.org/10.1145/1882291.1882328
https://doi.org/10.1145/1882291.1882328

Paper—How Can Transactional Semantics Enhance the Commit Rate of Context-aware Service…

	[19]	Llinás, G. A. G., Nagi, R. (2015). “Network and qos-based selection of complementary
services”, IEEE Transactions on Services Computing, 8(1), pp. 79–91, 2015. https://doi.
org/10.1109/TSC.2014.2299547

	[20]	Luo, Y.-s., Qi, Y., Hou, D., Shen, L.-f., Chen, Y., Zhong, X. (2011). “A novel heuristic algo-
rithm for qos-aware end-to-end service composition”. Computer Communications, 34(9),
pp. 1137–1144, 2011. https://doi.org/10.1016/j.comcom.2010.02.028

	[21]	Comes, D., Baraki, H., Reichle, R., Zapf, M., Geihs, K. (2010). “Heuristic approaches for
qos-based service selection”, International Conference on Service-Oriented Computing,
p. 441–455. Springer, 2010. https://doi.org/10.1007/978-3-642-17358-5_30

	[22]	Do Prado, P. F., Nakamura, L. H., Estrella, J., Santana, M. J., Santana, R. H. (2013). “A per-
formance evaluation study for qos-aware web services composition using heuristic algo-
rithms”, ICDS, The Seventh International Conference on Digital Society, pp. 53–58, 2013.

	[23]	Elsayed, D. H., Nasr, E. S., Alaa El Din, M., Gheith, M. H. (2017). “A new hybrid approach
using genetic algorithm and q-learning for qos-aware web service composition”, Interna-
tional Conference on Advanced Intelligent Systems and Informatics, pp. 537–546. Springer,
2017. https://doi.org/10.1007/978-3-319-64861-3_50

	[24]	Wu, Q., Zhu, Q. (2013). “Transactional and qos-aware dynamic service composition based
on ant colony optimization”, Future Generation Computer Systems, 29(5), pp. 1112–1119,
2013. https://doi.org/10.1016/j.future.2012.12.010

	[25]	Zhao, Y., Tan, W., Jin, T. (2017). “Qos-aware web service composition considering the
constraints between services”, Proceedings of the 12th Chinese Conference on Computer
Supported Cooperative Work and Social Computing, pp. 229–232. ACM, 2017. https://doi.
org/10.1145/3127404.3127451

	[26]	Chen, M. (2015). “QoS-aware Service Composition and Redundant Service Removal”. PhD
thesis, Concordia University, 2015.

	[27]	Khanouche, M. E., Amirat, Y., Chibani, A., Kerkar, M., Yachir, A. (2016). “Energy-centered
and qos-aware services selection for internet of things”, IEEE Transactions on Automa-
tion Science and Engineering, 13(3), pp. 1256–1269, 2016. https://doi.org/10.1109/
TASE.2016.2539240

	[28]	Bhiri, S., Perrin, O., Godart, C. (2005). “Ensuring required failure atomicity of composite
web services”, Proceedings of the 14th international conference on World Wide Web, WWW’05,
New York, NY, USA, pp. 138–147, 2005. https://doi.org/10.1145/1060745.1060769

	[29]	Di Penta, M., Esposito, R., Villani, M. L., Codato, R., Colombo, M., Di Nitto, E. (2006).
“WS-Binder: a Framework to Enable Dynamic Binding of Composite Web Services”, Pro-
ceedings of the international workshop on Service-oriented software engineering. ACM,
New York, NY, USA, pp. 74–80, 2006. https://doi.org/10.1145/1138486.1138502

	[30]	G Amundsen, S. L., Eliassen, F. (2006). “Combined Resource and Context Model for QoS-
Aware Mobile Middleware”, ARCS. pp. 84–98, 2006. https://doi.org/10.1007/11682127_7

	[31]	Moss, J. E. B. (1985). “Nested Transactions: An Approach to Reliable Distributed Comput-
ing”. Cambridge, MA: M.I.T. Press, 1985.

	[32]	Gray, J., Reuter, A. (1993). “Transaction Processing Concepts and Techniques”. Series in
Data Management Systems, Morgan Kaufmann, 1993.

	[33]	Bernstein, P. A., Newcomer, E. (1997). “Principles of Transaction Processing for the System
Professional”, Morgan Kaufmann, ISBN 1-55860-415-4, 1997.

	[34]	Châtel, P., Malenfant, J., Truck, I. (2010). “QoS-based Late-Binding of Service Invoca-
tions in Adaptive Business Processes”, IICWS, pp. 227–234, 2010. https://doi.org/10.1109/
ICWS.2010.74

56 http://www.i-jes.org

https://doi.org/10.1007/978-3-662-45391-9_8
https://doi.org/10.1007/978-3-662-45391-9_8
https://doi.org/10.1109/TSC.2014.2299547
https://doi.org/10.1109/TSC.2014.2299547
https://doi.org/10.1016/j.comcom.2010.02.028
https://doi.org/10.1007/978-3-642-17358-5_30
https://doi.org/10.1007/978-3-319-64861-3_50
https://doi.org/10.1016/j.future.2012.12.010
https://doi.org/10.1145/3127404.3127451
https://doi.org/10.1145/3127404.3127451
https://doi.org/10.1109/TASE.2016.2539240
https://doi.org/10.1109/TASE.2016.2539240
https://doi.org/10.1145/1060745.1060769
https://doi.org/10.1145/1138486.1138502
https://doi.org/10.1007/11682127_7

Paper—How Can Transactional Semantics Enhance the Commit Rate of Context-aware Service…

	[35]	Ben Mabrouk, N. (2012). “QoS-aware Service-Oriented Middleware for Pervasive Environ-
ments, Mobile Computing”. Universite Pierre et Marie Curie—Paris VI, 2012.

	[36]	Labriji, A., Charkaoui, S., Abdelbaki, I., Namir, A., Labriji, E. H. (2017). “Similarity Mea-
sure of Graphs”. International Journal of Recent Contributions from Engineering, Science
& IT (i-JES), vol. 5, Issue 2, pp. 42–56, 2017. https://doi.org/10.3991/ijes.v5i2.7251

	[37]	G Robertson, N., Seymour, P. D. (1995). “Graph Minors .XIII. The Disjoint Paths Problem”.
Journal of Combinatorial Theory, Series B 63, 1, pp. 65–110, 1995. https://doi.org/10.1006/
jctb.1995.1034

	[38]	Xiao, Y., Wu, W., Wang, W., He, Z. (2007). “Efficient Algorithms for Node Disjoint Sub-
graph Homeomorphism Determination”, CoRR abs/0709.1227, 2007.

	[39]	Ettazi, W., Hafiddi, H., Nassar, M. (2018). “A Context-Driven Commit Protocol for Enhanc-
ing transactional Services Performance in Pervasive Environments”, International Journal
of Advanced Pervasive and Ubiquitous Computing (IJAPUC), Volume 10, Issue 4, 2018.
https://doi.org/10.4018/IJAPUC.2018100102

	[40]	Chouiref Latreche, Z., Belkhir, A., Hadjali, A. (2013). “Advanced Profile Similarity to
Enhance Semantic Web Services Matching”. International Journal of Recent Contribu-
tions from Engineering, Science & IT (i-JES), vol. 1, Issue 1, pp. 13–20, 2013. https://doi.
org/10.3991/ijes.v1i1.2963

	[41]	Misbah, A., Ettalbi, A. (2018). “Automatic Conversion of a Conceptual Model to a Standard
Multi-view Web Services Definition”. International Journal of Recent Contributions from
Engineering, Science & IT (i-JES), vol. 6, Issue 1, pp. 43–56, 2018. https://doi.org/10.3991/
ijes.v6i1.8285

8	 Authors

Widad Ettazi is Professor of Software Engineering at National Higher School
for Computer Science and Systems Analysis (ENSIAS), Mohammed V University in
Rabat, Morocco. Her research interests are Context-Aware Service oriented Comput-
ing, Cloud Computing.

Hatim Hafiddi is a full Professor of Software Engineering at National Institute of
Communication (INPT), Rabat, Morocco. He is head of the EVEREST (InnovatiVE
REsearch on Software, Systems and daTa) research Team / STRS Laboratory. He holds
an Engineer degree and a PhD degree in Software Engineering from National College
of IT (ENSIAS), Rabat, Morocco. His research interests are Context-Aware Comput-
ing, Integration and interoperability, Smart service oriented systems, and Model driven
Engineering.

Mahmoud Nassar is a full Professor at National Higher School for Computer Sci-
ence and Systems Analysis (ENSIAS), Mohammed V University in Rabat, Morocco.
He is Head of IT architecture and Model driven Systems development (IMS) team of
Rabat IT Center. He received his PhD in Computer Science from the INPT Institute of
Toulouse, France. His research interests are Context-Aware Service-Oriented Comput-
ing, Component based Engineering, Model-Driven Engineering, Cloud computing, and
Cloud Migration. He leads numerous R&D projects related to the application of these
domains in Embedded Systems, smart cities, e-Health, e-Tourism.

Article submitted 2021-08-02. Resubmitted 2021-10-17. Final acceptance 2021-10-24. Final version
published as submitted by the authors.

iJES ‒ Vol. 9, No. 4, 2021 57

https://doi.org/10.1109/ICWS.2010.74
https://doi.org/10.1109/ICWS.2010.74
https://doi.org/10.3991/ijes.v5i2.7251
https://doi.org/10.1006/jctb.1995.1034
https://doi.org/10.1006/jctb.1995.1034
https://doi.org/10.4018/IJAPUC.2018100102
https://doi.org/10.3991/ijes.v1i1.2963
https://doi.org/10.3991/ijes.v1i1.2963
https://doi.org/10.3991/ijes.v6i1.8285
https://doi.org/10.3991/ijes.v6i1.8285

