
PAPER
MIPS X-RAY: A MARS SIMULATOR PLUG-IN FOR TEACHING COMPUTER ARCHITECTURE

MIPS X-Ray: A MARS Simulator Plug-in for
Teaching Computer Architecture

http://dx.doi.org/10.3991/ijes.v2i2.3527

Marcio R. D. Araújo1, Flávio L. C. Pádua1, Fabrício V. Andrade1 and Fabio L. Corrêa Junior2
1 Centro Federal de Educação Tecnológica de Minas Gerais (CEFET-MG), Belo Horizonte, MG, Brazil.

2 Instituto Federal de Educação, Ciência e Tecnologia de Minas Gerais (IFMG), Belo Horizonte, MG, Brazil.

Abstract—In this paper, we address the overall project and
resulting development of a new plug-in called MIPS X-Ray,
intended for the MARS simulation environment of the
MIPS architecture, which is widely used in the processes of
teaching and learning about computer architecture in
various educational institutions throughout the world.
Specifically, through the use of graphical animations, the
proposed plug-in enables a better understanding of data
flow models and the combined operation of functional units
given the execution of certain instructions by the
architecture processor. Thus, several computer architecture
concepts, which are often complex and abstract, can be
more easily presented to and assimilated by the students in
this learning area. Through the use of a validation source
code with the main functions of the MIPS instruction set,
the tests performed with the proposed plug-in demonstrate
the significant potential of this tool.

Index Terms—Computer architecture education, graphical
visualization of datapaths, MARS simulator, MIPS
architecture, MIPS X-Ray plug-in.

I. INTRODUCTION
In computer architecture and organization classes, the

teaching approach that has proven most effective for
analyzing the operation of a processor is based on the use
of datapath diagrams [1]-[3]. Due to the dynamic nature of
the processor, in which a significant amount of data and
control signals are exchanged between functional units, a
visual aid is necessary to understand correctly the
operating logic [4]. However, a full understanding of the
operation cannot be achieved by observing only one static
diagram, using conventional devices such as pen and
paper, for example [5]-[7].

Throughout the execution of an instruction, functional
units perform different functions according to the control
signals received, changing the unit status at each instant
[1]. This dynamic behavior creates difficulty in analyzing
the overall operation of the processor when observing the
corresponding diagram because it is only relevant at a
given moment. Therefore, generating a series of diagrams
that address each datapath state is one of the options for
displaying all of the operations of the processor. However,
this solution is highly inefficient because it results in a
significant number of static diagrams [8]. A more
acceptable solution is the development of a tool capable of
displaying a graphical animation of the operation of the
datapath, according to the instruction processed at any
given moment.

In light of this scenario, we present a new tool, called
MIPS X-Ray, that is capable of addressing the problem of
the static representation of a datapath through the creation
of graphical representations and animations of the
datapath, in response to the instructions entered as inputs.
To do so, the MIPS instruction set, belonging to the
family of RISC processors, is used, given its widespread
use for teaching purposes [1], [9]. The structure of a single
cycle without a pipeline using functional units with the
black- box structure, i.e., containing only the input, output
and control signals for each functional unit, was selected
for datapath modeling.

It should be emphasized that it is not our goal in this
study to create a full-system simulator but instead to focus
on the process of processor graphical representation. To
achieve this goal, the present work is based on the use of
one of the most complete and functional simulators among
those currently available, specifically, the MARS
simulator [9]. Thus, the system proposed in this paper was
developed in the form of a MARS simulator plug-in,
adding to it the capacity of processor operation
visualization.

The main advantage of this approach is the use of a
mature simulator, which allows the work to be focused on
the creation of a specific tool for datapath visualization.
The developed system provides the user of the MARS
simulator the possibility of viewing the operation of the
processor while it executes the code generated by the user.
Thus, it creates the possibility to analyze jointly the
programming logic and the operational aspects of the
architecture hardware.

The MIPS X-Ray tool is potentially applicable in
theoretical courses and computer architecture labs, serving
as an important aid for users of the MARS development
environment who wish to deepen their knowledge of the
hardware field.

This paper builds on our previous work [16] with (1) a
new and improved paper structure to present the MIPS X-
Ray plug-in; (2) an updated discussion of related work; (3)
a more comprehensive explanation of the proposed plug-
in, including the presentation of new functionalities and
enhancements, specifically: (i) a new datapath model,
which represents the MIPS architecture more detailed,
displaying not only the data flow among functional units,
but also the control signals used, (ii) the possibility of
using different datapath models; and (4) a new section that
briefly describes tests and results obtained.

36 http://www.i-jes.org

PAPER
MIPS X-RAY: A MARS SIMULATOR PLUG-IN FOR TEACHING COMPUTER ARCHITECTURE

II. RELATED WORK
In recent years, significant effort has been made to

develop simulators, development environments, and
hardware descriptors that are able to contribute to the
processes of teaching and learning computer architecture
[2], [6], [8]-[12].

Brorsson [8] conducted one of the first studies on this
topic by proposing a simulation tool, named MipsIt,
focused on the modeling and simulation of functional
units. Unlike the approach proposed in the present study,
the MipsIt tool presents data only in text mode, not
offering graphic simulations of the combined operation of
these units in a datapath.

Additionally, the authors of the MiniMips simulation
project [10] proposed a new system based on the use of
functional units with a high level of abstraction, not
representing the data exchange in the RT (register-transfer
level) model. Similar to MipsIt, the simulations performed
by this system do not offer the possibility of performing
graphical animations.

In [11], the authors introduced the WebMips system,
the goals of which resemble the goals of the system
proposed in this paper. However, unlike the MIPS X-Ray,
the WebMips system performs datapath simulations with a
pipeline, abstracting the control signals of the functional
units and representing only the data flow and the state of
each functional unit.

Garton [12] introduced the ProcessorSim, a tool that
performs a simulation of the operation of a single-cycle
datapath using the MIPS R2000 processor as the base.
Similar to the MIPS X-Ray system, the ProcessorSim
shows the data flow between functional units, although
only one functional unit sends messages at a time, which
varies from the actual operation of a processor that sends
simultaneous messages.

Vollmar and Sanderson [9] developed one of the most
complete and efficient simulators for the MIPS
architecture, called MARS, providing a mature
development environment, registers and memory
simulation tools, as well as educational tools that
demonstrate concepts of computer architecture that
interact with the source code created by the user.

In [6], the authors presented a simulator and assembler
capable of simulating a single-cycle MIPS processor,
focused on the display of values contained in each
functional unit at the time of the simulation; however, the
simulation was devoid of a light mesh of the input, output
and control signals.

Finally, Kabir et al. [2] presented the VisiMips tool,
with particular focus on the simulation of pipelines.
Among its other features, this tool implements a multi-
cycle MIPS processor with a pipeline, representing a
hazard detection unit in its datapath, as well as a
forwarding unit and other functional units. It is
noteworthy that this tool has a parser and assembler unit
for compiling the implemented source code.

The remainder of this article is organized as follows.
Section III of this paper initially presents information
regarding the MIPS architecture, such as an instruction set
and the features of the logical units, and then a brief
description of the MARS simulator is given, describing its
basic features, in particular those used in this study to
integrate the MIPS X-Ray system in the form of a plug-in.

The datapath structure used in the simulations is then
presented with a description of the functional units, as
well as the signals generated and received by the
functional units. Section IV presents and analyzes a set of
test results developed using the MIPS X-Ray system, and
Section V presents the conclusions and proposals of future
work

III. MIPS X-RAY
The MIPS (Microprocessor without Interlocked

Pipeline Stages) architecture is derived from the RISC
(Reduced Instruction Set Computing) architecture and
possesses a wide range of applications, such as routers,
printers and onboard devices [1], [3], [13].

Among the basic features of the MIPS architecture, the
existence of instructions of fixed length can be
highlighted, each of which possesses the same number of
bits, allowing for a more rapid interpretation of the
operation to be performed [2].

A. The MIPS Instruction Set
The instruction set of the MIPS architecture, and of the

MIPS32 architecture in particular [14], is formed by 32-bit
instructions, as illustrated in Figure 1. In this case, a fixed-
length 6-bit opcode is used, while the subsequent bits may
vary according to the type of instruction to be executed.

Generally, these instructions can be classified into three
types [15]:

1) Register type (R-Type) is a type of instruction in
which all of the data used are stored in registers. Each
register is addressed using 5 bits: the first two 5-bit
groups are used to store the register addresses, which
will provide the operation data, and the subsequent 5-bit
groups are used to provide the register address, which
will store the results of the operation. The R-type
instructions are the most used from the architecture,
comprising arithmetic and logical operations [13];

2) Immediate type (I-Type) is a type of arithmetic
instruction in which the data are entered directly into
the instruction bits. The first group of 5 bits is used to
store the address of the registers, while the remaining
16 bits store the data that will be used in processing.
Sum operations with an immediate value, value
comparison and storage of data from memory into
registers are examples of operations based on this type
of instruction;

Figure 1. The MIPS instruction format.

iJES ‒ Volume 2, Issue 2, 2014 37

PAPER
MIPS X-RAY: A MARS SIMULATOR PLUG-IN FOR TEACHING COMPUTER ARCHITECTURE

3) Jump Type (J-Type) is a type of instruction for
flow deviation, in which the sequence of instructions is
changed for a jump to a given point. The deviations are
unconditional, i.e., they occur without the need for a
test. Jump and Jump Register operations are given as
examples of such instructions.

B. The Simulation Environment of MARS
The MARS (MIPS Assembler and Runtime Simulator)

application is an integrated development environment for
the assembly language in the MIPS architecture. MARS
was specifically developed to support teaching activities
on architecture and computer organization [9].

Among other resources, MARS displays the simulation
features of the MIPS32 architecture [14], containing step-
by-step execution control, 32 registers, a memory
simulator, and an integrated code editor and assembler.

In addition to its native features, the MARS application,
which was developed with an open-source license,
frequently adds new plug-ins to its structure and is
therefore constantly improving the range of applications
of this environment. In this scenario, the MIPS X-Ray
system proposed in this paper is a new plug-in for the
MARS application, aiming to provide MARS with the
capacity for datapath visualization [16].

C. The Datapath Functional Units
A single-cycle datapath without a pipeline and with a

focus on the data and control signals was defined for the
development of the MIPS X-Ray, as shown in Figure 2.
The use of functional units as black boxes was established
as the initial approach, and therefore, only considers the
input, output, and control signals as relevant. The
operation of each functional unit will be addressed in
future work.

Note that the datapath defined for the MIPS X-ray
follows the model proposed by Patterson and Hennessy
[1] and possesses the following functional units:

 • PC (Program Counter): this is a simple register
with the function of storing the address of the next
instruction to be executed. This register sends the value
of this address for the instruction memory and receives
a new value, which can be derived from the adder,
which increments the address value to the next
instruction or, in the case of deviations, to the value of
the next memory address;

• ALU (Arithmetic Logic Unit): this unit is
responsible for performing arithmetic and logical
calculations. Its input data consist of the values of two
registers and a control signal that defines the operation
to be applied to the data. This unit generates as the
output the resulting value of the operation applied to the
data and a binary signal that indicates the result of
comparison operations;

• ALU Control: this unit defines which operation will
be executed by the ALU, receiving its bits directly from
opcode and transferring the defined operation to the
ALU;

• Instruction Memory: this unit works as a memory
bank, storing the instructions derived from the source
code. This functional unit stores the bits that will be
sent to all functional and control units, so that necessary
operations can take place. The instruction memory has
a data input that receives from the PC the memory
location that will be accessed and an output that sends
the 32-bit instruction that will be executed;

• Bank of Registers: this unit is responsible for storing
the 32 registers used by the MIPS architecture. The
bank of registers exhibits three register address inputs
to be used, one data input to be stored in the registers
and one control input, which defines whether the
register will read from or write in the registers. This
unit also has two outputs for sending the data contained
in the registers, which were addressed by the input data;

Figure 2. Functional units of the datapath defined for the MIPS X-Ray plug-in.

38 http://www.i-jes.org

PAPER
MIPS X-RAY: A MARS SIMULATOR PLUG-IN FOR TEACHING COMPUTER ARCHITECTURE

• Control Unit: the control unit receives the bits that
correspond to the opcode, identifies which instruction
will be executed and sends control signals for each
functional unit, informing each unit what it should do.
For this reason, the control unit is connected to all of
the functional units under its control;

• Data Memory: the data memory is the unit
responsible for storing the data to be persisted after
instruction execution. The data from the data memory
remain in the memory until either the time at which
they are overwritten or when the power is switched off;

• Sign Extend: in some situations, all 32 bits of a
register are used to store a certain value. When the data
considered has a sign bit, it should be extended to the
last bit that is reserved for its storage. In this context,
the function of the sign extend unit is to fill the
remaining bits of the register so that the data signal is
not missed;

• Shift Left: the function of this unit is to shift the bits
of an instruction to the left and fill with zeros the
remaining bits that have become empty;

• Multiplexers: these functional units are used to define
which signal will be transmitted by the system.
Multiplexers, similar to the other functional units, are
controlled by the control unit;

• Adders: adders are arithmetic units with the function
of adding the input signals, receiving two values and
returning the resulting sum as the output signal.

D. Signal Propagation through the Datapath
The designed functional units work together to process

a given input instruction. The modules interact through an
exchange of signals or bit sequences. A color sequence to
define each type of signal, in which each color represents
a set of bits generated by a given functional unit, was used
to implement the MIPS X-Ray plug-in.

As shown in Figure 3, a legend is dynamically created
based on the current instruction, displayed as (1) the
manner in which the bits are divided and sent to each
functional unit, (2) the specific mnemonic of the
instruction and (3) a description of the control signals
arriving at each functional unit.

The MIPS X-Ray plug-in uses the architecture of the
MARS simulator to execute one instruction at a time,
which is the approach used to visualize the graphical
animation produced. Note that such an approach is based
on a single-cycle datapath, where each instruction is
executed in an atomic manner [16]. Therefore, the user
should expect that all of the instruction is presented before
jumping to the next step of the plug-in execution.

Several data that can be accessed directly through the
MARS simulator were used to implement the plug-in.
After compiling the source code, the instructions are
loaded into an instruction memory simulator, and the
instructions can be accessed through the application
programming interface (API) of the simulator. Thus, it is
possible to analyze the opcode and define the type of
instruction that will be executed.

Additionally, to display information on the current
instruction, the MIPS X-Ray plug-in accesses the data
from the bank of registers and the data memory, which are
stored in MARS in a data structure that simulates those
functional units. Access to this data is important for the
plug-in because it would not be possible to show all of the
information that is being manipulated when using only the
instruction bits to represent the data flow, which would
make it difficult to understand the real operation of the
datapath.

The Graphics library, which belongs to the set of Java
standard libraries, was used in this study to implement the
MIPS X-Ray plug-in. The graphical animations produced
consist of representations of the signals that leave the
functional units and go to the destination unit. Each color
used is related with the e instruction bits, as shown in
Figure 3, through the legend positioned to the left of the
datapath.

Finally, to enable the use of different types of datapaths,
the MIPS X-Ray plug-in was designed in a modularized
way, to separate the operating logic from the parameters
used to generate the data flow of the produced graphical
animation. Specifically, the animation parameters are
stored in an XML file, making it possible to easily change
the path of the animation by editing the parameters
contained in this file.

E. MIPS X-Ray Benefits to Student Learning
The teaching of hardware technologies and, specially,

the topic of computer architecture and organiza¬tion is
usually a challenging task in Engineering and Computer
Science courses. Several reasons can be pointed out for
that, such as [17]: (i) the ever-expanding amount of
relevant materials, since new methods have been
continuously proposed, (ii) the need for understanding
distinct subjects, such as, electronic circuits, digital logic,
assembly-language programming and system design, to
cite just a few, and (iii) the need to design and execute
both hardware and software experiments to demonstrate
several important concepts[18].

In some of the main reference books on this field [1],
[19], [20], the approach commonly used to explain the
hardware of a specific processor consists in to divide it in
functional units, such as, registers, arithmetic logic unit,
data memory, among others, and present the connections
and control signals exchanged between them.
Additionally, it is frequently addressed the use of an
assembly language, which is radically different than most
high-level languages, consisting in a well-known hard
learning process. For pedagogical purposes, the learning
of an assembly language is valuable to understand several
low level aspects, as for example, the difficulty of
allocating registers for data calculations and address
references and what high level control constructs (e.g. if,
while, for and switch) look like when translated to
assembly. For real world use, on the other hand,
sometimes one needs to escape to assembly for
performance reasons or to access hardware resources not
accessible from a high level language. Due to the
complexity of all those concepts, the students usually face
great difficulties to understand and use them.

In this scenario, educational simulators have been
created to provide support for teaching and learning by
mimicking the behaviors of computer hardwares [3], [4],

iJES ‒ Volume 2, Issue 2, 2014 39

PAPER
MIPS X-RAY: A MARS SIMULATOR PLUG-IN FOR TEACHING COMPUTER ARCHITECTURE

[10]-[13], [21] and allowing to handle the gap between the
assembly language used and the functional units of the
corresponding processor under analysis. However, most
current simulators abstract an essential part of a processor
operation, specifically, the signal propagation in the
datapath. Therefore, even though simulators as MARS
allow the users to familiarize with functional units and the
effects of each instruction executed on them, it is not
simple to understand how the processor's datapath was
designed.

In fact, the comprehension of the signal propagation in
a datapath depends on the presentation of what signals are
activated according to the kind of instruction executed.
The conditional branch and load instructions, for example,
use distinct functional units in the datapth and, certainly,
the inclusion of visualization or animation methods in the
simulator considered appears as interesting alternative to
aid student engagement and deeper understanding. To
achieve this goal, we have developed the plug-in MIPS X-
Ray for the MARS simulation environment of the MIPS
architecture. By using MIPS X-Ray, the students may
dynamically visualize the signals inside the MIPS
processor, instead of trying to visualize them statically, as
presented in the main reference books on this topic.

IV. RESULTS AND TESTS
To evaluate the operation of the MIPS X-Ray plug-in, a

validation source code with the main functions of the
MIPS instruction set was used. Thus, the identification of
the instructions were tested, in addition to the register and
memory values. Further, the behavior of the datapath was
compared with the diagrams presented from the related
basic literature. Figures 3 and 4 illustrate executions of the
register and jump instruction types within the proposed
plug-in.

To evaluate the use of different datapaths, the initial
image of the datapath under evaluation was changed, and
the corresponding XML configuration file was edited,
defining a datapath configuration in which the location of
functional units differed from the original. In this context,
the data flow was then modified to coincide with the data
input and output locations of each functional unit.

From the tests performed, it was possible to observe
that the MIPS X-Ray plug-in successfully managed to
display the operation of all instructions of the MIPS
architecture set, correctly recognizing each type of
instruction with its corresponding opcode, as well as the
registers used during code execution.

Finally, the applicability of MIPS X-Ray was evaluated
by several students from an undergraduate program in
computer engineering of a Brazilian federal university,
named CEFET-MG. Specifically, students who have
attended the course “Computer Architecture and
Organization” have interacted with MIPS X-Ray in
practical and theoretical classes. In theoretical classes,
MIPS X-Ray worked as an alternative pedagogical tool
that contributed to explain the processor’s operation,
replacing lots of static images commonly used to achieve
this goal. In practical classes, however, after developing
and compiling codes in assembly to solve basic math
problems, the students used MIPS X-Ray to visualize the
code execution in the processor’s datapath.

The MIPS X-Ray usefulness was then measured with
the feedback of the students. They were required to

answer a form in the end of the course in order to identify
the improvements in the learning process due to the usage
of MIPS X-Ray plug-in. That survey demonstrated that
the students believe that MIPS X-Ray improves
significantly the comprehension of several concepts
related to the operation of a processor’s datapath, being
especially useful for applications involving the
understanding of the operation of single-cycle datapaths
without pipelines.

V. CONCLUSIONS AND FUTURE STUDIES
This work presents a new tool in the form of a plug-in

for the MARS simulator, providing a visual aid in the
process of studying the operation of the MIPS processor.
The tool developed, called MIPS X-Ray, is presented in
the form of a dynamic datapath capable of responding to
the source code generated by the user.

The approach employed allows the use of the main
features of the MARS tool, such as the assembler, code
development tool, and simulator of functional units, as
well as the behavior of the processor.

Several possibilities for future studies include the
development of new features for the proposed plug- in. In
particular, a detailed analysis of the operation of each
functional unit present in the datapath of the MIPS X-Ray
could be performed, allowing the user to engage the black
box approach in addition to collecting detailed
information regarding the operation of each unit in the
logic diagrams of the operation. Thus, in future versions
of the plug-in, it is expected that the user will be able to
click on the functional units as the datapath animation is
occurring, allowing the user to visualize the inner
workings of the functional unit of interest.

Finally, another possible future study consists of
modifying the MIPS X-Ray datapath to allow
implementation with the pipeline to be used. This
approach will allow the user to analyze other structures
used in this process, such as the hazard detection unit, the
forwarding unit and the pipeline register bank.

ACKNOWLEDGMENT
The authors gratefully acknowledge the financial

support of FAPEMIG-Brazil under Proc. APQ-01180-10;
CEFET-MG under Proc. PROMEQ - 010/13; CAPES-
Brazil and CNPq-Brazil.

REFERENCES
[1] D. A. Patterson and J. L. Hennessy, Computer Organization and

Design: The Hardware/Software Interface. Morgan Kaufmann,
2008.

[2] M. T. Kabir, M. T. Bari, and A. Haque, "VisiMips: Visual
Simulator of MIPS32 Pipelined Processor", in IEEE International
Conference on Computer Science & Education, 2011, p. 788-793.

[3] H. Sarjoughian, Y. Chen, and K. Burger, "A Component-based
Visual Simulator for MIPS32 Processors", in IEEE Frontiers in
Education Conference, 2008, pp. F3B-9.

[4] B. Nikolic, Z. Radivojevic, J. Djordjevic, and V. Milutinovic, "A
Survey and Evaluation of Simulators Suitable for Teaching
Courses in Computer Architecture and Organization", IEEE
Transactions on Education, vol. 52, no. 4, pp. 449-458, 2009.
http://dx.doi.org/10.1109/TE.2008.930097

[5] H. Grunbacher, "Teaching Computer Architecture/Organisation
Using Simulators", in IEEE Frontiers in Education Conference,
1998, pp. 1107-1112.

40 http://www.i-jes.org

PAPER
MIPS X-RAY: A MARS SIMULATOR PLUG-IN FOR TEACHING COMPUTER ARCHITECTURE

[6] M. A. Lusco and Stroud, "PSIM: A Processor SIMulator for Basic
Computer Architecture and Operation Education", in IEEE
SoutheastCon, 2010, pp. 115-118.

[7] C. Yehezkel, W. Yurcik, M. Pearson, and D. Armstrong, "Three
Simulator Tools for Teaching Computer Architecture: Little Man
Computer, and RTLSim", ACM Journal on Educational Resources
in Computing, vol. 1, no. 4, pp. 60-80, 2001.
http://dx.doi.org/10.1145/514144.514732

[8] M. Brorsson, "MipsIt: A Simulation and Development
Environment Using Animation for Computer Architecture
Education", in ACM workshop on Computer Architecture
Education, 2002, p. 12.

[9] K. Vollmar and P. Sanderson, "MARS: An Education-Oriented
MIPS Assembly Language Simulator", in ACM SIGCSE Bulletin,
vol. 38, no. 1, 2006, pp. 239-243. http://dx.doi.org/10.1145/
1124706.1121415

[10] E. Z. Bem and L. Petelczyc, "MiniMIPS: A Simulation Project for
the Computer Architecture Laboratory", in ACM SIGCSE
Bulletin, vol. 35, no. 1, 2003, pp. 64-68.
http://dx.doi.org/10.1145/792548.611934

[11] I. Branovic, R. Giorgi, and E. Martinelli, "WebMIPS: A New
Web-based MIPS Simulation Environment for Computer
Architecture Education", in ACM workshop on Computer
Architecture Education, 2004, p. 19.

[12] J. Garton. (2005, Sep.) ProcessorSim, A Visual MIPS R2000
Processor Simulator. [Online]. Available: http://www.test.org/doe/

[13] L. Ming and C. Qixian, "A Research for the Optimization of MIPS
Instruction Set Simulation", in IEEE International Conference on
Computer Science & Education, 2009, pp. 1886-1888.

[14] N. Pinckney, T. Barr, M. Dayringer, M. McKnett, N. Jiang, C.
Nygaard, D. Money Harris, J. Stanley, and B. Phillips, "A MIPS
R2000 Implementation", in IEEE Design Automation Conference,
2008, pp. 102-107.

[15] K. Yi and Y.-H. Ding, "32-Bit RISC CPU Based on MIPS
Instruction Fetch Module Design", in IEEE International Joint
Conference on Artificial Intelligence, 2009, pp. 754-760.

[16] G. C. Sales, M. R. Araújo, F. L. C. Pádua, and F. L. Corrêa Júnior,
"MIPS X-Ray: A Plug-in to MARS Simulator for Datapath

Visualization", in IEEE International Conference on Education
Technology and Computer, vol. 2, 2010, pp. V2-32.

[17] W. Yurcik and E. F. Gehringer, "A Survey of Web Resources for
Teaching Computer Architecture", in ACM Workshop on
Computer Architecture Education, 2002, p. 23.

[18] L. D. Feisel and A. J. Rosa, "The Role of the Laboratory in
Undergraduate Engineering Education", Journal of Engineering
Education, vol. 94, no. 1, pp. 121-130, 2005.
http://dx.doi.org/10.1002/j.2168-9830.2005.tb00833.x

[19] A. S. Tanenbaum, Structured Computer Organization. Prentice
Hall PTR, 1984.

[20] J. P. Hayes, Computer Architecture and Organization. McGraw-
Hill, 2002.

[21] G. S. Wolffe, W. Yurcik, H. Osborne, and M. A. Holliday,
"Teaching Computer Organization/Architecture with Limited
Resources Using Simulators," in ACM SIGCSE Bulletin, vol. 34,
no. 1, 2002, pp. 176-180. http://dx.doi.org/10.1145/563517.
563408

AUTHORS
M. R. D. Araújo is with the Department of Computing,

CEFET-MG, Av. Amazonas, 7675, Belo Horizonte, MG,
Brazil (e-mail: marcio@decom.cefetmg.br).

F. L. C. Pádua is with the Department of Computing,
CEFET-MG, Av. Amazonas, 7675, Belo Horizonte, MG,
Brazil (e-mail: cardeal@decom.cefetmg.br).

F. V. Andrade is with the Department of Computing,
CEFET-MG, Av. Amazonas, 7675, Belo Horizonte, MG,
Brazil (e-mail: vivas@decom.cefetmg.br).

F. L. Corrêa-Júnior is with the Department of
Computing, IFMG, Av. Prof. Mário Werneck, 2590, Belo
Horizonte, MG, Brazil (e-mail: fabiocorrea@ifmg.edu.br).

Submitted in 23 January 2014. Published as re-submitted by the authors
12 May 2014.

Figure 3. Execution of the register type instruction in the Mips X-ray plug-in.

iJES ‒ Volume 2, Issue 2, 2014 41

PAPER
MIPS X-RAY: A MARS SIMULATOR PLUG-IN FOR TEACHING COMPUTER ARCHITECTURE

Figure 4. Execution of the jump type instruction in the Mips X-Ray plug-in.

Figure 5. Execution of the immediate type instruction in the Mips X-Ray plug-in.

42 http://www.i-jes.org

	iJES, Vol. 2, No. 2, 2014
	MIPS X-Ray: A MARS Simulator Plug-in for Teaching Computer Architecture

