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Abstract—We are now in Big Data era, and there is a grow-
ing demand for tools which can process and analyze it. Big 
data analytics deals with extracting valuable information 
from that complex data which can’t be handled by tradi-
tional data mining tools. This paper surveys the available 
tools which can handle large volumes of data as well as 
evolving data streams. The data mining tools and algorithms 
which can handle big data have also been summarized, and 
one of the tools has been used for mining of large datasets 
using distributed algorithms. 

Index Terms—Big Data, Data Mining, Hadoop, Large-scale 
Machine Learning. 

I. INTRODUCTION 
The term “big data” refers to any collection of data 

which is so large and complex that it becomes difficult to 
handle using traditional database management systems 
and data processing tools. The first research paper on ‘big 
data’ appeared in 2000 by Diebold [1]. The sources of big 
data are social networking sites, e-commerce portals, 
sensors (smart devices/IoT), etc. 

Big Data is characterized by 3 V’s [2]: Volume, Varie-
ty, and Velocity. There is no fixed size to classify a da-
taset as big data or not, instead ‘volume’ dimension refers 
to a dataset which is large enough to be beyond the pro-
cessing capabilities of traditional data processing tools, 
and the dataset can grow up to any size which can be in 
peta-bytes (1015 bytes), exa-bytes (1018 bytes) or even 
more. The ‘variety’ dimension is included because the 
traditional data warehouses store only structured data, but 
data generated on Twitter, etc. is highly unstructured, so 
such data is also beyond the processing capabilities of 
traditional data processing tools. While traditional data 
analytics is based on periodic analysis of data, big data is 
processed and analyzed in real-time or near real-time. 
Therefore, the third dimension of ‘velocity’ has also been 
included. 

Apart from these 3 V’s, two more V’s have been added 
viz. Veracity and Value. ‘Veracity’ refers to the lack of 
quality and accuracy, as we can understand by the exam-
ple of data generated on Twitter consisting of abbrevia-
tions, typos and colloquial speech. The dimension of ‘val-
ue’ was added due to the fact that big data after being 
processed must provide valuable information to the organ-
ization which can use it for making important business 
decisions, policies and strategies. 

The remainder of this paper is structured as follows: In 
Section II, we discuss various tools available to process 
big data. Section III summarizes the machine learning 
models and data mining algorithms. Then in Section IV, 
we discuss the tools and algorithms available for data 
mining, with focus on tools supporting distributed pro-
cessing and stream processing. The experimental setup 

and the results are discussed in Section V, and then we 
conclude the paper in Section VI.  

II. BIG DATA TOOLS 
Traditional data processing tools (e.g. Excel, SPSS, 

etc.) are not able to scale up with the size of growing da-
tasets. For example, with Microsoft Excel 2007, analysts 
can’t perform analysis on more than 1 million rows. So a 
tool which can scale-up should be used to deal with the 
growing datasets. Social networking platforms like Face-
book, Twitter, etc. generate huge volumes of valuable 
social data per day at very high-speeds. This data need to 
be processed in real-time which can be used to predict 
outcome of elections, stock market behavior, etc. To do 
this we require tools which can perform analysis on 
streaming data. The major tools for handling different 
characteristics of big data are summarized in Table I.  

MPP (Massively Parallel Processing) relational data-
bases like Greenplum, Vertica, etc. have the capability to 
store and manage petabytes of data, where the data is 
partitioned across multiple nodes with each node having 
processors/memory to process data locally (it is a shared-
nothing architecture i.e. no disk-level sharing). But MPP 
databases have an upper limit on storage capacity as well 
as it has same data processing limitations as associated 
with SQL. 

Semi-structured data is structured data stored in a form 
other than tables (e.g. XML, JSON, etc.), and a database 
management system which provides a mechanism for 
storage and retrieval of such data is called a NoSQL data 
store (NoSQL stands for Not Only SQL indicating that 
they may also support SQL-like query languages). Exam-
ples of NoSQL data stores are Cassandra, HBase, Mon-
goDB, etc. The NoSQL data stores do not have a fixed 
rigid schema like RDBMS for data to fit into, hence they 
can handle disparate data coming from different sources. 
BigTable [3] is a distributed storage system designed for 
managing large volumes of semi-structured data, or 
BigTable can be said to be a distributed NoSQL data 
store. 

TABLE I.   
BIG DATA TOOLS 

Characteristic Tool Remark 

Volume MPP databases, Ha-
doop 

distributed pro-
cessing 

Variety NoSQL databases, 
Hadoop 

schema-less  
data store 

Velocity In-memory databases, 
Spark 

query data inside 
RAM 

instead of disk 

Stream processing Storm, S4 
Real-time pro-
cessing instead of 
batch processing 
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Google File System (GFS) [4] is a distributed file sys-
tem designed to provide access to data using large clusters 
of commodity hardware. Map-Reduce [5] is a program-
ming model for distributed and parallel processing. Map-
Reduce model consists of two functions: “map” function 
splits the input data and distributes it across multiple ma-
chines to process the data in parallel, and “reduce” func-
tion that collects the results from the machines and re-
solves these results into a final aggregated result. Map-
Reduce programming can be done in Java, Python, Ruby, 
etc. Apache Hadoop is an open-source tool for distributed 
storage and distributed processing. Hadoop uses HDFS 
(Hadoop Distributed File System) which is based on GFS 
for distributed storage of semi-structured data, and it uses 
Map-Reduce for distributed processing. Amazon Elastic 
MapReduce (EMR) is web-service which uses Hadoop 
to process large volumes of data on Amazon EC2 (Elastic 
Compute Cloud) cloud.  

There are various Hadoop-based tools which make Big 
Data processing more convenient and efficient. Apache 
Sqoop is a tool for transferring data b/w Hadoop and 
RDBMS. Apache Flume is a tool for collecting, aggregat-
ing, and moving data from multiple sources into Hadoop. 
Apache HBase is an open-source distributed NoSQL data 
store modeled on BigTable, and it runs on top of HDFS. 
HDFS is concerned with storage of large files, whereas 
HBase allows storage of data as tables (but the data stored 
does not need a pre-defined fixed schema like with an 
RDBMS). HBase helps Hadoop to overcome challenges in 
random read and write. HBase doesn’t provide a SQL-like 
query language and to process data in HBase tables we 
have to use Map-Reduce programs. Apache Hive is a data 
warehousing framework built on top of Hadoop, which 
allows users to store data in tables and write queries in 
HiveQL (Hive Query Language) to retrieve data instead of 
complex Map-Reduce program. Hive converts the 
HiveQL queries into a series of Map-Reduce jobs. But 
HiveQL has limited capability and can’t be used to per-
form complex operations.  Cloudera, MapR, Horton-
works, IBM Infosphere BigInsights are some Hadoop-
based distributions providing HDFS, Map-Reduce, Pig, 
Hive, HBase, Sqoop, Flume, Hue, Impala, Oozie, 
ZooKeeper, Sentry, etc in one single package.  

The tools discussed so far deal with ‘volume’ only and 
we need to look for tools which can also handle data 
streams. In-memory databases like SAP HANA, Altibase, 
etc. are gaining popularity for applications where response 
time is critical, but almost all of them are RDBMS. 
Apache Storm and Apache S4 (Simple Scalable 
Streaming Systems) are distributed real-time computa-
tion framework for processing fast, large streams of data. 
Apache Spark is a cluster computing framework, which 
provides performance up to 100 times faster than Map-
Reduce through data caching. Apache Spark can also 
handle data streams through Spark Streaming library. 
Apache Hadoop YARN is a sub-project of Hadoop 
which enables Hadoop to go beyond batch processing and 
support broader data processing. YARN (Yet Another 
Resource Negotiator) is a part of Hadoop NextGen, and 
enables Hadoop to provide resource management capabili-
ties to new engines like Apache Spark, etc. Apache Sam-
za is a YARN-based stream processing framework. Ama-
zon Kinesis is a cloud-based service for processing of 
distributed data streams. 

The tools discussed in this section deal with only pro-
cessing of voluminous or streaming data, and we can build 
applications using these tools for processing of such data. 
The tools which deal with mining of Big Data will be 
discussed in Section IV. 

III. DATA MINING 
Data Mining is the computational process of finding 

patterns in given data and making predictions for the new 
data. The main techniques for finding patterns are associa-
tion-rule/frequent-pattern mining, clustering, classification 
and regression analysis. The data mining process consists 
of 3 stages: Getting and Cleaning data (or ETL – Extract, 
Transform, and Load), Model building (choosing an ap-
propriate learning model/algorithm to get the desired re-
sult), and Deployment (application of model to data).   

The data mining models can be divided into 2 catego-
ries: unsupervised and supervised models.  Unsupervised 
models are concerned with finding patterns/clusters in the 
given data, whereas supervised models deal with training 
the system with historical data and making predictions or 
classifying new data. Various statistical models like re-
gression analysis, bayes model, maximum-likelihood 
estimation, etc. and machine learning models like Neural 
Network, Decision tree, etc. are used for data mining.  

The models for supervised learning are: Regression, 
Nearest Neighbors, Naïve Bayes, Decision trees, Percep-
tron, Support Vector Machines, Ensemble models. The 
popular algorithms for clustering are: k-means, fuzzy c-
means (centroid models), BIRCH (hierarchical models), 
DBScan, OPTICS (density models). Other techniques for 
clustering are Expectation-Maximization (distribution 
models), Self Organizing Maps (Neural Network). The 
algorithms for frequent pattern mining are: Apriori algo-
rithm, FP-Growth algorithm, Eclat, etc.  

Dimensionality reduction may be required before ap-
plying a learning model as high-dimensional data (data 
that requires more than 2 or 3 dimensions) can be difficult 
to analyze. Principal Component Analysis (PCA), Inde-
pendent Component Analysis (ICA), Factor Analysis, and 
Non-Negative Matrix Factorization are few techniques for 
dimensionality reduction. 

Ensemble learning is the combination of multiple algo-
rithms to get improved results for supervised learning. The 
popular ensemble methods are Bagging, Boosting, and 
Random Forests.  

Outlier detection is a data mining technique to find 
anomalies in data. There are various clustering based 
algorithms for outlier detection. 

Machine Learned Ranking is the use of machine learn-
ing for construction of ranking models in information 
retrieval systems (e.g. PageRank algorithm used by 
Google search engine). Topic models are used to discover 
“topics” in a collection of documents. A popular algorithm 
for topic mining is Latent Dirichlet Allocation. 

The data mining algorithm studied so far are not able to 
handle data streams. So, in order to obtain useful infor-
mation from data streams, we need to find new algorithms 
or modify existing algorithms. There are various models 
which have been proposed for learning a data stream: we 
can use the entire data stream, or we can take a sample of 
data stream, or we can also use the sliding-window model 
of computation. The sliding-window model considers only 
the last n elements of the stream, based on the assumption 
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that it is more important to use recent data for learning 
from data streams. 

Widmer and Kubat [6] noticed that in the data stream, 
the classification or clustering centers continuously 
change with time. This is known as the problem of con-
cept-drift in data streams. The model which is most ap-
propriate to handle concept-drift is the sliding-window 
model. Gama et. al. [7] discusses the strategies for han-
dling concept drift. 

Many algorithms have been proposed in literature 
which deal with mining of data streams. These include 
algorithms for data stream clustering, data stream classifi-
cation, etc. Data stream algorithms have gained more 
focus recently with the advent of big data, as the data 
generated is to be processed in real-time to obtain the 
desired value from it. 

The most popular algorithms for clustering of a data 
stream are BIRCH [8], Scalable k-means [9], Single-pass 
k-means [10], Stream [11], Stream LSearch [12], CluS-
tream [13], ODAC [14], DenStream [15], D-Stream [16], 
SWClustering [17], ClusTree [18], DGClust [19], 
StreamKM++ [20], SOMKE [21]. 

The algorithms for classification of data stream can be 
divided into two categories – incremental learning and 
ensemble learning algorithms. Ensemble learning com-
bines multiple learning algorithms for prediction and may 
discard some training data as out-dated whereas incremen-
tal learning adjusts old results to what has been learned 
from the new data. The popular algorithms for incremental 
learning are Incremental Bayesian algorithm [22], Incre-
mental SVM [23], VFDT (Hoeffding Tree) [24], CVFDT 
[25]. Some ensemble learning algorithms are Streaming 
Ensemble Algorithm (SEA) [26], Accuracy-Weighted 
Ensemble (AWE) [27], Dynamic Weighted Majority 
(DWM) [28]. 

The most notable work on regression on data streams is 
Hoeffding-based Regression trees [29]. The famous algo-
rithms for pattern mining from a data stream are estDec 
[30], FP Stream [31], Moment [32], IncMine [33], CloS-
tream [34]. The algorithms proposed for outlier detection 
in data streams are Abstract-C [35], STORM [36], COD 
and MCOD [37]. BRISMFPredictor [38] has been pro-
posed for online Recommendation Systems. 

The streaming data may come from multiple sources, 
hence the stream mining algorithms must be able to syn-
chronize and aggregate these data streams for efficient 
data mining. The most notable work on multi-source data 
stream mining are: the SPIRIT [39] algorithm which dis-
covers patterns from multiple data streams, Siddiqui pro-
posed techniques for clustering and classification of mul-
tiple data streams in [40, 41], whereas Ikonomovska 
worked on multi-stream regression in [42]. 

IV. BIG DATA MINING TOOLS 
For voluminous data, we need tools which can scale-up 

to data size. The traditional data mining tools like Weka, 
R, RapidMiner, etc. are not scalable as they do not support 
distributed processing. However, Wegener et al. [43] 
integrated Weka with Hadoop, and Das et al. [44] 
achieved integration of R and Hadoop. 

As far as distributed learning algorithms are concerned, 
Chu et al. [45] adapted Google's Map-Reduce paradigm 
on a variety of learning algorithms including k-means, 
Expectation-Maximization, Locally Weighted Linear 

Regression, Logistic Regression, Naive Bayes, Support 
Vector Machine, Back-propagation Neural Network, Prin-
cipal Component Analysis, Independent Component 
Analysis, and Gaussian Discriminative Analysis. 

A classification of data mining tools based on type of 
data (batch/stream) and type of processing (distributed and 
non-distributed) is given in Fig. 1 below. 

For large scale machine learning, we require tools and 
algorithms which can scale up to the large volumes of 
data. One such tool is Apache Mahout, which is a ma-
chine learning library built on top of Hadoop. It has Map-
Reduce implementations of major machine learning mod-
els, which can help us to mine large volumes of data 
through distributed processing on a Hadoop cluster. An-
other tool is Apache Spark’s MLlib which is also a ma-
chine learning library, has a broader range of machine 
learning models compared to Mahout, and can also run on 
a Hadoop cluster. Another important tool is H2O  which 
is a “scalable” machine-learning API and supports R as 
well as Hadoop. 

For mining of data streams, we require tools which 
support stream processing. VFML (Very Fast Machine 
Learning) toolkit supports k-means, EM algorithm for 
stream clustering, and Bayesian Network, Hoeffding Tree 
for stream classification. SPMF supports estDec, CloS-
tream for pattern mining from data stream. Massive 
Online Analysis (MOA) is the most popular open-source 
tool which supports mining of data streams. MOA doesn’t 
support distributed processing, and there may be situations 
where we may need distributed processing of data 
streams.  

Jubatus is a distributed online machine learning 
framework supporting many data stream mining algo-
rithms.  Jubatus is one such tool which supports data min-
ing of data streams through distributed processing. Scala-
ble Advanced Massive Online Analysis (SAMOA) is a 
framework for development of distributed streaming ma-
chine learning algorithms while keeping programming 
abstraction for the underlying streaming processing en-
gines like Apache Storm, S4, and Samza.  

Vowpal Wabbit is an out-of-core machine learning 
system which speeds up machine learning with techniques 
such as hashing, reductions, etc. VW supports algorithms 
for multi-class classification like One-Against-All (OAA), 
Cost-sensitive OAA (CSOAA), Error Correcting Tourna-
ment (ect), Weighted All Pairs (wap). VW also supports 
algorithms for Regression (Ordinary Least Squares), Rec-
ommendation Systems (Matrix Factorization, Contextual 
Bandit), Regularization (Truncated Gradient Descent). 

 
Figure 1.  Data Mining Tools 
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V. EXPERIMENTS & RESULTS 
In order to provide more insight into big data mining, 

the authors conducted experiments on large data sets 
(larger than the available RAM on the system). The da-
tasets chosen were airline dataset (11.8 GB) for clustering 
and HIGGS dataset for classification (7.48 GB). The air-
line dataset [67] consists of 29 features with 123534969 
observations. The HIGGS dataset [68] consists of 28 fea-
tures with 11000000 observations. 

The RAM available on the systems was only 2 GB and 
therefore full datasets could not be loaded in RAM for 
data mining. To handle the large datasets, we created a 
private cloud such that the combined RAM of all these 
systems in the cloud is more than the size of the dataset. 
The tool used for creation of the cloud as well as mining is 
H2O. It was observed that the data loaded into the H2O 
cloud is further compressed as the airline dataset loaded 
into the H2O cluster was of 3.78 GB and the HIGGS da-
taset loaded was of 2.3 GB. 

The algorithms chosen were distributed k-means for 
clustering, and distributed random forest, distributed deep 
learning for classification. The time taken to cluster the 
dataset or to generate the classification model for each 
algorithm is given in Table II. The authors also varied the 
size of the cloud to study the effect of change of size of 
the cloud on the turn-around time of the results (the size of 
dataset was beyond the processing capabilities of a single-
node, so multi-node was cloud was setup). 

TABLE II.   
EXPERIMENTAL RESULTS: TIME TAKEN FOR MODEL GENERATION  

    
Dataset Algorithm 

Cloud-size  
(4 core per system) 

1 3 6 
airline.csv Distributed k-means     - 1.35 

hours 
6.24 
min 

HIGGS.csv Distributed Random 
Forest (20 trees)     - 32 

min 
3.68 
min 

HIGGS.csv Deep Learning 
(200X200, 10 epochs)     - 2.66 

hrs 
47.2 
min 

 

VI. CONCLUSION 
In the experiments performed, the authors were able to 

cluster and classify a large dataset on a private cloud, 
which can be scaled up to handle the growing dataset. The 
time taken to cluster the dataset and to generate the mod-
els was also quite satisfactory. The authors also observed 
that the turnaround-time of the results improved by in-
creasing the size of the cloud. 

The turn-around time to generate the classification 
model and the accuracy of the algorithm depends upon the 
parameters of the algorithm. The authors here have not 
attempted to compare these algorithms in any way, as the 
focus of this paper is only to survey the tools and algo-
rithms.  
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