
Paper—Similarity Measure of Graphs 

Similarity Measure of Graphs 
https://doi.org/10.3991/ijes.v5i2.7251 

Amine Labriji 
University Hassan II Casablanca, Morocco 

labriji73@gmail.com 

Salma Charkaoui 
University Hassan II Casablanca, Morocco 
charkaoui.salma@gmail.com 

Issam Abdelbaki 
University Hassan II Casablanca, Morocco 

i.abdelbaki@gmail.com 

Abdelouhaed Namir 
University Hassan II Casablanca, Morocco 

a.namir@yahoo.fr 

El Houssine Labriji 
University Hassan II Casablanca, Morocco 

labriji@yahoo.fr 

Abstract—The topic of identifying the similarity of graphs was considered 
as highly recommended research field in the Web semantic, artificial intelli-
gence, the shape recognition and information research. One of the fundamental 
problems of graph databases is finding similar graphs to a graph query. Existing 
approaches dealing with this problem are usually based on the nodes and arcs of 
the two graphs, regardless of parental semantic links. For instance, a common 
connection is not identified as being part of the similarity of two graphs in cases 
like two graphs without common concepts, the measure of similarity based on 
the union of two graphs, or the one based on the notion of maximum common 
sub-graph (SCM), or the distance of edition of graphs. This leads to an inade-
quate situation in the context of information research. To overcome this prob-
lem, we suggest a new measure of similarity between graphs, based on the simi-
larity measure of Wu and Palmer. We have shown that this new measure satis-
fies the properties of a measure of similarities and we applied this new measure 
on examples. The results show that our measure provides a run time with a gain 
of time compared to existing approaches. In addition, we compared the rele-
vance of the similarity values obtained, it appears that this new graphs measure 
is advantageous and  offers a contribution to solving the problem mentioned 
above. 

Keywords— Graph, ontology, similarity measure, semantic web, user profile. 
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1 Introduction 

The importance of graphs has been increasing in the complex structured data mod-
eling in several real and recent applications (Bioinformatics, pattern recognition, 
XML, chemistry, user profile, information research etc.) [1], [2], [3], [4], [5]. All of 
those applications show the importance and the wide use of the Graph Databases 
paradigm (BDGS) [3], [6], [7]. The similarity between graphs is an issue that has been 
at the heart of several research studies. Usually, we can classify the requests to a BDG 
into two categories:  

! Search graphs by inclusion relation.  
! Search graph by similarity.  

The first category consists of two sub-problems:  
1. Search sub-graphs.  
Let D = {g1, g2, . . . , gn}, a BDG and q a graph query(said a request subgraph) it 

is to search all graphs gi of database, D, such that q is a subgraph of gi (it means,  
q ! gi).  
2. Search super graphs. Let D = {g1, g2, . . . , gn}, a BDG and q a graph que-

ry(called super graph query) This is to search all gi graphs, of the graph database such 
as q is a super graph gi (it means, gi ! q).  

[5], [8], [9], [10]).“ As for the second category (that is to say search graphs by sim-
ilarity) it consists in seeking all the graphs of GDB which are structurally similar to 
the graph of the current request and has emerged as a new trend [11], [12]).  

In recent years, a number of approaches have been proposed to meet the research 
graphs similarity queries (or simply, queries by similarity). For example  

! (Yan and al., [13], He and Singh [14] and Tale (Tian and Patel [11] have proposed 
techniques to respond to requests subgraphs by means of an approximate matching.  

! hang et al. [15] proposed a technique to find an answer to the super-graph queries 
using a similarity search.  

! oth approaches, C-Tree and Tale, use the edit distance to measure the similarity 
between graphs.  

! he work of (Yan and al., [13] and (Shang and al. 2010) [15], [16] use the concept 
of maximal common subgraph for the calculation of such similarity.  

As can be seen, the proposed approaches to respond to queries by similarity they 
rely solely on the concepts of the two graphs disregarding fathers concepts. That way, 
we cannot preserve information about the similarity of each feature in the comparison 
of two graphs. In this article, we propose a new definition of the similarity between 
graphs using the notion of conceptual similarity [17], [18]. 
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2 Existing Measure of Graphs Similarities 

In this section we will first recall some basic notions on graphs and measurements 
of existing similarities between graphs and then we will recall the definition of the 
similarity measure between nodes that will be used to define our new measure of 
similarity between graphs. In this section we will first recall some basic notions on 
graphs and measurements of existing similarities between graphs and then we will 
recall the definition of the similarity measure between nodes that will be used to de-
fine our new measure of similarity between graphs.  

2.1 Somme basic notions about graphics 

Graph A graph g is defined by a quadruplet (V, E, L, l) where V is all the knots, E 
is all the bones, L all the tabs is and l the function of labelling is which puts in corre-
spondence every knot or bone with a tab of L.  

Let us note that different knots can have the same tab and size of g is defined as 
follows:  

|g| = |E(g)| (i.e., the size of a graph is the number of its bones).  

Isomorphism of graph: Either two graphs g = (V, E, L, 1) and g’ = (V’, E’, L’, 
l’), g an isomorphic in g’ (denoted by g " g’ ) if there is a bijection f : V # V’ , such 
as  

1. !v " V, f(v) " V’ and l(v) = l’(f(v)).  

2. !(v, v’) " E, (f(v), f(v’)) " E’ and l(v, v’ ) = l’(f(v), f(v’))  

Isomorphism of sub-graph: Given two graphs g = (V, E, L, 1) and g’ = (V’, E’, 
L’, 1’), g an isomorphic of sub-graph in g’ if there is an injection fr : V # V’, such as  

1. !v " V, f(v) " V’ and l(v) = l’(f(v)).  

2. (v, v’) " E, (f(v), f(v’)) " E’ and l(v, v’ ) = l’(f(v), f(v’))  

Sub-graph super-graph: Given two graph g = (V, E, L, 1) and g’ = (V’, E’, L’, 
1’), g is said sub-graph of g’ (or g’ is a super-graph g), denoted by g ! g’ if there is an 
isomorphism of sub-graph g to g’.  

Common Maximal Subgraph, CMS: Definition (Common Maximal Subgraph, 
CMS).  

Let g 1 and g 2 be the largest common subgraph of g 1 and g 2 is the largest con-
nected subgraph of g 1 which is isomorphic to g 2, denoted by g '= SCM (g 1, g 2). 

2.2 The similarity between graphs.  

Similarity based on the notion CMS: Bunke and Shearer (1998) [3] developed a 
type of similarity measures between graphs which is based on the maximum common 
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subgraph (CMS). Consider two groups g1 and g2, the similarity-based CMS  is de-
fined as follows,  

!"#!"#!!!!!!! !
!!"# !!!!! !
!"#!!!!!!! !!!!!

 

where |max(g1, g2)| = max(|g1|, |g2|) and |CMS(g1, g2)| denotes the number of 
edges in CMS(g1, g2). Clearly, if the CMS of two graphs is wide, then their similarity 
is high. The Measurement, SimCMS, is standardized (0 $ SimCMS(g1, g2) $ 1) car 
|CMS(g1, g2)| $ |max(g1, g2))|.  

Similarity based on the union of two graphs, SimUG: The distance measurement 
based on the union of graphs (UG), proposed by Wallis et al. (2001) [7], is based on 
the union of graphs. This distance is used to model the size of the problem. Definition 
Given two graphs g1 and g2, the similarity of graphs based on the union of graphs is 
defined as follows,  

!"#!"!!!!!!! !
!!"# !!!!! !

!! ! !! ! !!"# !!!!! !
 

Where the denominator is the size of the union of two graphs as a set-view. This 
similarity measure is normalized and its behavior is similar to that of SimSCM. It is 
easy to see that SimUG(g1, g2) < SimCMS(g1, g2) ( meaning that SimUG is more de-
manding as SimCMS). 

3 Similarity Between Nodes of a Graph 

Our new measure of similarity between graphs is based essentially on the similarity 
between the nodes. In this section we will describe the similarity measurements be-
tween the most used nodes. The most intuitive similarity measure of the nodes of a 
graph is their distance [19]- [20], [17]. This similarity is evaluated by the distance that 
separates the nodes in the graph. In each graph, distance is characterized by the short-
est path that involves a common ancestor or the smallest generalizing, potentially 
connecting two objects across common descendants. Among the works classified 
under this banner are: 

3.1 Measure of rada and al 

This measure [19] is based on the fact that we can compute the similarity based on 
the “est-to” hierarchical links. To calculate the similarity of the two nodes in the 
graph, we must calculate the number of minimal arcs that separate them. Intuitively, 
this measure is based on the following principle A node C1 is considered more similar 
to a node C2 than to a node C3 if the distance from C1 to C2 within the graph is 
shorter than that of C1 to C3 Rada and al. [19] Considers this distance, denoted 
distedge(c1, c2), as the length of the shortest path between two concepts. The simi-
larity between c1, c2 is defined by  
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!"# !!! !! !
!

!"#$!"#! !!! !!
 

3.2 Wu and Palmer measure 

The principal of calculating similarity based on the count edge method is defined 
as follow; considering the graph % formed by a set of nodes and a root node (R) (Fig. 
1). C1 and C2 represent two elements of the graph of which we will calculate the 
similarity. The principle of 

calculating similarity is based on the distance (n1 and n2) from nodes C1 and C2 to 
the closest common ancestor (CS) and the distance, n, from the closet common ances-
tor (CS) of C1 and C2 to the root node.  

 
Fig. 1. Two concepts of a graph 

The similarity measure of Wu and Palmer is defined by the following expression:  

!"#!" !!! !! ! !!
!! !

!! ! !! ! !! !
 

This measure has been improved and the new measure is  

!"# !!! !! !
!!

!! ! !! ! !! ! ! !! !!! !!
 

4 Similarity of Graphs Based on the Similarity of Concepts 

A weighted graph is defined by 

! ! !!!!! !!!!! ! !!!  
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Where Ci is a concept and  !!!is its weight. 

4.1 Similarity between concept and graph  

Definition:  

Let G be a graph, we pose !, the set of all the parents of all concepts graph G.  
Let C be a concept, a graph G and Sim(., .) a similarity function between concept. 

We define the similarity between the concept C and the graph G, by  
!"# !!! ! !"#!!!!!"# !!! ! 

Proposition  

Let C a concept and a graph G, we have  

! ! ! !!"# !!! ! !!

 
2.  

!"# !!! ! ! !!! ! ! ! !!

Proof  

1. ! ! ! !"# !!! ! !"#!!!!!"#!!!!!! ! !! 
So  

!!! ! !!!"#!!!!!"# !!! ! ! !"#!!! !! ! !!

Based on the properties of the similarity function, we deduce that  
C = f. 

Therefore, C " G.  

2. !"# !!! ! !! !"#!!!!"# !!! ! ! 
So 

!! ! !! !"# !!! ! !!

According to the definition of the similarity function see [18], we deduce that C 
concept and all concepts of G does not have parents common. So  

!!! ! ! ! !!

4.2 Similarity of a graph with respect to another 

Definition  
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let G1 = {(g1,i, &i), i = 1, 2, . . .} and G2 = {(g2,j , 'j ), j = 1, 2, . . .} two weighted 
graphs. We define similarity graph G1 compared to G2, which notes 

!"# !!!!! !
!!!"#!!!!!"#!!!!! !!!!!!!

!!!
!

Proposition 

Let G1 and G2 are two weighted graphs  
1. sim(G1/G2) = 1 # G1 ! G2. 
2. sim(G1/G2) = 0 # G1 ( G2 = $.  

Proof  

1. We have  

!"# !!!!! ! !
!!!"#!!!!!"#!!!!! !!!!!!!

!!!
! ! 

Therefore  

!!!"#!!!!!"# !!!! !!!!! ! !! ! !
!

%

So,  

!!!!!! ! !!!!"#!!!!!"# !!!! !!!!! ! !!!

because coefficients &i are different from zero. Therefore  

!!!!! ! !!!!"#!!!!!!"# !!!! !!!!! ! !!"# !!!! !!!!! ! !!

So  

!!!! ! !!!!!!!!"#!!!!! ! !!!!

It follows that  

"#!$!"%&!

2. Since  

!!!!!! ! !!!!"#!!!!!"# !!!! !!!!! ! !!!

 
Thereafter  

!!!!!! ! !!!!!!!! ! !!!!!"# !!!! !!!!! ! !!!

That is, the concepts of the two graphs G1 and G2 do not have common parents. So  

"#!'!"%!(!)&!
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Proposition  

Let G1 = {(g1,i, &i), i = 1, 2, . . .}, G2 = {(g2,i, )i), i = 1, 2, . . .} and G3 = {(g3,j , 
'j ), j = 1, 2, . . .} three weighted graphs. We have  

*+,-"#."%/!0!*+,-"#."1/!2!*+,-"1."%/!

Proof  

By definition  

!"# !!!!! ! !
!!!"#!!!!!"# !!!! !!!!!!

!!!
!

Let, g3,k " G3, according to the properties of the similarity between two concepts, it 
was  

!"# !!!! !!!!! ! !"# !!!! !!!!! ! !"# !!!! !!!!! !!

  
Therefore  

!"# !!!!! ! !
!!!"#!!!!!"#!!!!! !!!!!!!

!!!
!

! !
!!!"#!!!!!"# !!!! !!!!! ! !!!"#!!!!!"# !!!! !!!!!!!

!!!
!

! !"# !!!!! ! !"#-!!!! !!!!!/!

!!!! !"# !!!!! !
!!!"#!!!!!"#!!!!! !!!!!!!

!!!
!

 
So, we deduce  

!"#!!!!!!! ! !"#!!!!!!! ! !"#!!!!!!!!

4.3 Similarity between two graphs  

Definition  

G1 and G2 are two weighted graphs. It poses as similarity of graphs G1 and G2 the 
following expression  

!!" !!!!! !
!"#!!!!!!! ! !"#!!!!!!!

!
!

Proposition  
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Let G1, G2 and G3 three weighted graphs, we have  

#& !"# !!!!! ! ! !!! ! !!&!
%& !"# !!!!! ! !"# !!!!! !
1& !"# !!!!! ! !"# !!!!! ! !"# !!!!! !!

Proof  

1. If  

!"# !!!!! ! !
!"#!!!!!!! ! !"#!!!!!!!

!
! !!

Since Sim(G1/G2) and Sim(G2/G1) are less than or equal to 1. It follows that 
Sim(G1/G2) = 1 and Sim(G2/G1) = 1 we know that  

!"# !!!!! ! ! !!!!!!!!!

!"# !!!!! ! ! !!!!!!!!!

We can deduce  
G1 = G2 

2.  
Sim(G1,G2) = !"#!!!!!!! ! !"#!!!!!!!

!
!

  
= 

!"#!!!!!!! ! !"#!!!!!!!
!  

 = Sim(G2,G1) 
3.  Based on the properties of the similarity of a graph with respect to another, it 

has been  
Sim(G1,G2) (! !"#!!!!!!! ! !"#!!!!!!!

!
!

! 0! !"#!!!!!!! ! !"#!!!!!!!
!

!
!"#!!!!!!! ! !"#!!!!!!!

!
!

! 0! *+,-"#3"1/!2*+,-"13"%/!
consequently  

*+,-"#3!"%/!0!*+,-"#3!"1/!2!*+,-"13!"%/!!
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5 An Illustrative Example 

 
Fig. 2. Example of graph 

Considering weighted graphs given by  

1. G1 = {(C1, 5),(C11, 4),(C12, 7),(C111, 7),(C121, 6),(C1111, 5),(C1112, 5),(C11111, 4), 
C11112, 3)}.  

2. G2 = {(C1, 5),(C13, 2),(C12, 7),(C13, 2),(C121, 6),(C1311, 6),(C1312, 7),(C14111, 5)}.  
3. G3={(C11, 4),(C111, 7),(C1111, 5),(C1112, 5),(C11111, 4), C11112, 3)}.  
4. G4 = {(C13, 2),(C13, 2),(C1311, 6),(C1312, 7),(C13111, 5)}.  
5. G5 = {(C2, 5),(C21, 6),(C22, 2),(C23, 2),(C211, 4), . . . ,(C23121, 2)}.  

To compare the new graph similarity measure with existing measure Simscm(Gi, 
Gj) and simUG(Gi, Gj), we will calculate  

*+,-"+3!"4/!567!+!(!#!&!&!&!8!9:;!4!(!#!&!&!&!8&!!

*+,*<=-"+3!"4/!567!+!(!#!&!&!&!8!9:;!4!(!#!&!&!&!8&!!

*+,>"-"+3!"4/!567!+!(!#!&!&!&!8!9:;!4!(!#!&!&!&!8&!

5.1 The new measure of similarity between graphs 

In the following table the element ai,j = sim(ci , cj ) represents the similarity be-
tween the concepts ci and cj. 
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Table 1.  Similarity between the concepts 

 
 
The similarity, Sim(G1/G2), of G1 compared to G2 is given by  

 
 
The similarity, sim(G2/G1), of G2 compared to G1 is given by  
 

 
We deduce the similarity of two graphs G1 and G2.  

Sim(G1, G2) = (0, 58 + 0, 34)/2 = 0.46 
We propose to calculate the similarity between the graphs G3 and G4.  

Table 2.  Similarity between the concepts of graphs G3 and g4 

 
 
We can deduce  

*+,-"8."1/!(!-?&@!2!?&AB!2!#&11!2!#3!AA!2!?&C#/.%%!(!?&%18A!

*+,-"1."8/!(!-?&@@!2!%!2!#&##!2!#&##!2!?&@@!2!?&A8/.%@!(!?&%1%@!
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Following the similarity between the two graphs G1 and G2 is  

&'()*+,%*-.%/%)012+-3%4%012+25.62%/%012++7!

D:!EFG!56HH6I+ng array we show the values of the new measure of similarity be-
tween graphs. 

Table 3.  Similarity between the concepts of graphs 

 

5.2 The similarity measure between graphs based on CMS 

In applying the definition of similarity based on SCM, we find the following re-
sults:  

 
In the following array we show, SimCMS(Gi, Gj), the values of the measure of simi-

larity, based on SCM, between graphs 

Table 4.  Similarity, SimCMS, between graphs 

 

5.3 The similarity measure between graphs based on UG 

In applying the definition of similarity based on UG, we find the following results:  

 
In the following array we show, SimUG(Gi, Gj), the values of the measure of simi-
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larity, based on UG, between graphs. 

Table 5.  Similarity, Simug, between graphs 

 
 
Interpretation of results According to the definition of similarity measures  

SimUG(., .) et SimCMS(., .), the graphs that have no nodes in common, have a measure 
of similarity zero. This is the case for graphs G4 and G1 or G4 and G3. Both 
measures do not take into account a possible existence of common parent concepts to 
concepts of the two graphs. This is the case for graphs G3 and G4.  

 
Fig. 3. Comparison of SimUG and SimCMS 

From these results, it is likely that these graphs have nothing in common, but that 
is not the case. Our new similarity measure takes into account a possible existence of 
parent concepts in common. 

 
Fig. 4. *Comparison of our similarity, SimUG and SimCMS 
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For example Sim(G4, G3) = 0, 2336. These one hand. On the other hand, we note 
that G3 is a part of G1, therefore, there is a strong similarity between these two 
graphs. the latter is confirmed by our measurement and less for other measures.  

We have G3 is a subset of G1. 
&'(8*)*+,%*9.%/%0,%77,%
&'(:;&%)*+,%*9.%/%0,%77,%
&'()*+,%*9.%/%0,%5-921%

Note that the graphs G1 and G5 do not have in common nodes and have no parent 
nodes in common. We deduce that  

&'()*9,%*3.%/%&'(;:&)*9,%*3.%/%&'(8*)*9,%*3.%/%0%%

6 Conclusion  

In this work we presented a new measure of graph similarity. We compared it with 
the similarity measurements of graphs based on “CMS” and “UG” considered as the 
most used. We have demonstrated in the Evaluation section that the new measure 
improves the results and eliminates the problems of existing measures. Since infor-
mation retrieval systems do not use a semantic similarity measure, we intend to use it 
in ours to increase the relevance of their results. 
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