Naïve Bayes Classifier for Journal Quartile Classification
DOI:
https://doi.org/10.3991/ijes.v7i2.10659Abstract
Classification is a process for distinguishing data classes, with the aim of being able to estimate the class of an object with unknown label. One popular method that used for classifying data is Naïve Bayes Classifier. Naïve Bayes Classifier is an approach that adopts the Bayes theorem, by combining previous knowledge with new knowledge. The advantages of this method are the simple algorithm and high accuracy. In this study, it will show the ability of Naïve Bayes Classifier to classify the quality of a journal commonly called Quartile. This study use a dataset of 1491 instances. The results show an accuracy of 71.60% and an error rate of 28.40%
Downloads
Published
How to Cite
Issue
Section
License
The submitting author warrants that the submission is original and that she/he is the author of the submission together with the named co-authors; to the extend the submission incorporates text passages, figures, data or other material from the work of others, the submitting author has obtained any necessary permission.
Articles in this journal are published under the Creative Commons Attribution Licence (CC-BY What does this mean?). This is to get more legal certainty about what readers can do with published articles, and thus a wider dissemination and archiving, which in turn makes publishing with this journal more valuable for you, the authors.
By submitting an article the author grants to this journal the non-exclusive right to publish it. The author retains the copyright and the publishing rights for his article without any restrictions.
This journal has been awarded the SPARC Europe Seal for Open Access Journals (What's this?)