Modelling Various Solar Cells Materials Using Lorentzian-Drude Coefficients
DOI:
https://doi.org/10.3991/ijes.v4i4.6566Abstract
In order to develop an optoelectronic model for simulating different light trapping structures sandwiching the photovoltaic active layer, determining the materials dispersion and absorption properties is a must. The targeted model should be able to simulate the desperation and absorption capabilities of different conductor and semiconductor materials over the entire sun spectrum (200 nm to 1700 nm). Therefore, the Lorentzian-Dude (LD) model is chosen due to its simplicity in implementation with the finite difference time domain algorithm chosen for optical modelling. In this paper, various materials are selected to be modelled with the LD model. The proposed algorithm is not only used for modelling material behaviour of various conducting materials published in literature, but is also used for other conducting and semiconducting materials that the original model was not capable of modelling over the entire range of spectrum. Besides that, the suggested algorithm showed a better time performance than those mentioned in literature. Experimental 1D grating structure prototype samples were made to validate the simulation results, showing perfect agreement.
Downloads
Published
How to Cite
Issue
Section
License
The submitting author warrants that the submission is original and that she/he is the author of the submission together with the named co-authors; to the extend the submission incorporates text passages, figures, data or other material from the work of others, the submitting author has obtained any necessary permission.
Articles in this journal are published under the Creative Commons Attribution Licence (CC-BY What does this mean?). This is to get more legal certainty about what readers can do with published articles, and thus a wider dissemination and archiving, which in turn makes publishing with this journal more valuable for you, the authors.
By submitting an article the author grants to this journal the non-exclusive right to publish it. The author retains the copyright and the publishing rights for his article without any restrictions.
This journal has been awarded the SPARC Europe Seal for Open Access Journals (What's this?)