Speech Synthesis for Gender Classification
DOI:
https://doi.org/10.3991/ijes.v5i1.6690Abstract
This paper presents a gender identification system to be used for call forwarding in health related communications. The system listens to the caller then using speech synthesis, image processing, and linear support vector machine SVM identifies either he or she is a male or a female. This solution is imperative in a conservative country such as the Kingdom of Saudi Arabia in order to forward the call to a male or female practitioner. The originality of the approach is that no transcription is used to learn SVM models. To identify the gender of the caller, the trained SVM model of the reference pieces are compared to transcripts of the audio frequency record and are using the Levenshtein distance. For the identification of gender, we obtain an accuracy rate of 94% on a test flow containing 449 pieces of speech clips.
Downloads
Published
How to Cite
Issue
Section
License
The submitting author warrants that the submission is original and that she/he is the author of the submission together with the named co-authors; to the extend the submission incorporates text passages, figures, data or other material from the work of others, the submitting author has obtained any necessary permission.
Articles in this journal are published under the Creative Commons Attribution Licence (CC-BY What does this mean?). This is to get more legal certainty about what readers can do with published articles, and thus a wider dissemination and archiving, which in turn makes publishing with this journal more valuable for you, the authors.
By submitting an article the author grants to this journal the non-exclusive right to publish it. The author retains the copyright and the publishing rights for his article without any restrictions.
This journal has been awarded the SPARC Europe Seal for Open Access Journals (What's this?)