Euclidean Distance Based Classifier for Recognition and Generating Kannada Text Description from Live Sign Language Video
DOI:
https://doi.org/10.3991/ijes.v5i3.7336Abstract
Sign language recognition has emerged in concert of the vital space of analysis in computer Vision. The problem long-faced by the researchers is that the instances of signs vary with each motion and look. Thus, during this paper a completely unique approach for recognizing varied alphabets of Kannada linguistic communication is projected wherever continuous video sequences of the signs are thought of. The system includes of three stages: Preprocessing stage, Feature Extraction and Classification. Preprocessing stage includes skin filtering, bar histogram matching. Eigen values and Eigen Vectors were thought of for feature extraction stage and at last Eigen value weighted Euclidean distance is employed to acknowledge the sign. It deals with vacant hands, so permitting the user to act with the system in natural manner. We have got thought of completely different alphabets within the video sequences and earned a hit rate of 95.25%.
Downloads
Published
How to Cite
Issue
Section
License
The submitting author warrants that the submission is original and that she/he is the author of the submission together with the named co-authors; to the extend the submission incorporates text passages, figures, data or other material from the work of others, the submitting author has obtained any necessary permission.
Articles in this journal are published under the Creative Commons Attribution Licence (CC-BY What does this mean?). This is to get more legal certainty about what readers can do with published articles, and thus a wider dissemination and archiving, which in turn makes publishing with this journal more valuable for you, the authors.
By submitting an article the author grants to this journal the non-exclusive right to publish it. The author retains the copyright and the publishing rights for his article without any restrictions.
This journal has been awarded the SPARC Europe Seal for Open Access Journals (What's this?)